Here a ligand exchange strategy for synthesizing sol-gel oxides is demonstrated to achieve multifunctionality including direct photolithography, high dielectric strength, and high charge carrier mobility, which is challenging to obtain in such oxides. For this purpose, a series of bidentate ligands with azide termini and ethylene-glycol bridges is synthesized, and these ligands are universally applicable to the synthesis of a variety of dielectric and semiconductor oxides. Optimized photolithography conditions yield a high-quality ZrO dielectric film with a high dielectric constant and strength of ≈18 and ≈7 MV cm, respectively.
View Article and Find Full Text PDFOver the past decade, molecular-switch-embedded memory devices, particularly field-effect transistors (FETs), have gained significant interest. Molecular switches are integrated to regulate the resistance or current levels in FETs. Despite substantial efforts, realizing large memory window with a long retention time, a critical factor in memory device functionality, remains a challenge.
View Article and Find Full Text PDFOrganic vertical transistors are promising device with benefits such as high operation speed, high saturation current density, and low-voltage operation owing to their short channel length. However, a short channel length leads to a high off-current, which is undesirable because it affects the on-off ratio and power consumption. This study presents a breakthrough in the development of high-performance organic Schottky barrier transistors (OSBTs) with a low off-current by utilizing a near-ideal source electrode with a web-like Ag nanowire (AgNW) morphology.
View Article and Find Full Text PDFA novel approach for developing shortwave IR (SWIR) organic photodiodes (OPDs) using doped polymers is presented. SWIR OPDs are challenging to produce because of the limitations in extending the absorption of conjugated molecules and the high dark currents of SWIR-absorbing materials. Herein, it is shown that the conversion of bound polarons to free polarons by light energy can be utilized as an SWIR photodetection mechanism.
View Article and Find Full Text PDFA multichannel/multicolor visible light communication (VLC) system using entirely organic components, including organic light emitting diodes (OLEDs) and organic photodiodes (OPDs), is developed to demonstrate indoor lighting applications where the integration of OLEDs and OPDs has significant potential. To achieve this, tricolor (Red/Green/Blue(R/G/B))-selective OPD arrays for the receiver and tricolor OLED arrays for the emitter are developed. For (R/G/B)-selective OPDs, a Fabry-Pérot electrode to enhance color selectivity and a thick junction structure to effectively accommodate a wide range of driving voltages are introduced.
View Article and Find Full Text PDFWe propose a highly efficient crosslinking strategy for organic-inorganic hybrid dielectric layers using azide-functionalized acetylacetonate, which covalently connect inorganic particles to polymers, enabling highly efficient inter- and intra-crosslinking of organic and inorganic inclusions, resulting in a dense and defect-free thin-film morphology. From the optimized processing conditions, we obtained an excellent dielectric strength of over 4.0 MV cm, a high dielectric constant of ~14, and a low surface energy of 38 mN m.
View Article and Find Full Text PDF