Graphene and other two-dimensional materials have unique physical and chemical properties of broad relevance. It has been suggested that the transformation of these atomically planar materials to three-dimensional (3D) geometries by bending, wrinkling, or folding could significantly alter their properties and lead to novel structures and devices with compact form factors, but strategies to enable this shape change remain limited. We report a benign thermally responsive method to fold and unfold monolayer graphene into predesigned, ordered 3D structures.
View Article and Find Full Text PDFA significant need in nanotechnology is the development of methods to mass-produce three-dimensional (3D) nanostructures and their ordered assemblies with patterns of functional materials such as metals, ceramics, device grade semiconductors, and polymers. While top-down lithography approaches can enable heterogeneous integration, tunability, and significant material versatility, these methods enable inherently two-dimensional (2D) patterning. Bottom-up approaches enable mass-production of 3D nanostructures and their assemblies but with limited precision, and tunability in surface patterning.
View Article and Find Full Text PDFA significant challenge in oncology is the need to develop in vitro models that accurately mimic the complex microenvironment within and around normal and diseased tissues. Here, we describe a self-folding approach to create curved hydrogel microstructures that more accurately mimic the geometry of ducts and acini within the mammary glands, as compared to existing three-dimensional block-like models or flat dishes. The microstructures are composed of photopatterned bilayers of poly (ethylene glycol) diacrylate (PEGDA), a hydrogel widely used in tissue engineering.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2015
Hydrogels such as poly(N-isopropylacrylamide-co-acrylic acid) (pNIPAM-AAc) can be photopatterned to create a wide range of actuatable and self-folding microstructures. Mechanical motion is derived from the large and reversible swelling response of this cross-linked hydrogel in varying thermal or pH environments. This action is facilitated by their network structure and capacity for large strain.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
November 2015
This paper presents a handheld micro-injector system using common-path swept source optical coherence tomography (CP-SSOCT) as a distal sensor with highly accurate injection-depth-locking. To achieve real-time, highly precise, and intuitive freehand control, the system used graphics processing unit (GPU) to process the oversampled OCT signal with high throughput and a smart customized motion monitoring control algorithm. A performance evaluation was conducted with 60-insertions and fluorescein dye injection tests to show how accurately the system can guide the needle and lock to the target depth.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
July 2014
We report on a therapeutic approach using thermo-responsive multi-fingered drug eluting devices. These therapeutic grippers referred to as theragrippers are shaped using photolithographic patterning and are composed of rigid poly(propylene fumarate) segments and stimuli-responsive poly(N-isopropylacrylamide-co-acrylic acid) hinges. They close above 32 °C allowing them to spontaneously grip onto tissue when introduced from a cold state into the body.
View Article and Find Full Text PDFThe water adsorption isotherms on methyl (CH(3))-, hydroxyl (OH)-, and carboxylic acid (COOH)-terminated alkylthiol self-assembled monolayers (SAMs) on Au were studied at room temperature and ambient pressure with polarization modulation reflection-absorption infrared spectroscopy (PM-RAIRS). PM-RAIRS analysis showed that water does not adsorb at all on the CH(3)-SAM/Au at subsaturation humidity conditions. In a dry Ar environment, the OH-SAM/Au holds at least 2 layer thick strongly bound water molecules which exhibit a broad O-H stretch vibration peak centered at ∼3360 cm(-1).
View Article and Find Full Text PDF