Curr Opin Biotechnol
December 2024
The escalating climate crisis underscores the urgent need for sustainable development, with CO utilization emerging as a pivotal approach to mitigating greenhouse gas emissions. Among various technological approaches, metabolic engineering of microorganisms for CO utilization offers significant potential. This review covers the engineering of endogenous CO fixation pathways, the construction of novel synthetic pathways, and strategies to optimize metabolic flux, enhance cofactor availability, and manipulate regulatory genes to improve CO assimilation efficiency.
View Article and Find Full Text PDFPlastics are indispensable in everyday life and industry, but the environmental impact of plastic waste on ecosystems and human health is a huge concern. Microbial biotechnology offers sustainable routes to plastic production and waste management. Bacteria and fungi can produce plastics, as well as their constituent monomers, from renewable biomass, such as crops, agricultural residues, wood and organic waste.
View Article and Find Full Text PDFBiotechnol Bioeng
November 2022
Heme has recently attracted much attention due to its promising applications in the food and healthcare industries. However, the current titers and productivities of heme produced by recombinant microorganisms are not high enough for a wide range of applications. In this study, the process for the fermentation of the metabolically engineered Escherichia coli HAEM7 strain was optimized for the high-level production of heme.
View Article and Find Full Text PDFBiotechnol Bioeng
November 2022
Zinc protoporphyrin IX (ZnPPIX) has been considered as a promising red colorant for food industries as well as an anticancer drug. However, bio-based production of ZnPPIX from a renewable carbon source has not been reported yet. In this study, a fermentation process of the metabolically engineered Escherichia coli HAEM7 strain was optimized for the high-level production of ZnPPIX.
View Article and Find Full Text PDFSustainable food production is a key to solve complicated and intertwined issues of overpopulation, climate change, environment and sustainability. Microorganisms, which have been routinely consumed as a part of fermented foods and more recently as probiotic dietary supplements, can be repurposed for our food to present a sustainable solution to current food production system. This paper begins with three snapshots of our future life with microbial foods.
View Article and Find Full Text PDF