Publications by authors named "Hyangsu Nam"

Recent technical advances in cell-free protein synthesis (CFPS) offer several advantages over cell-based expression systems, including the application of cellular machinery, such as transcription and translation, in the test tube. Inspired by the advantages of CFPS, we have fabricated a multimeric genomic DNA hydrogel (mGD-gel) via rolling circle chain amplification (RCCA) using dual single-stranded circular plasmids with multiple primers. The mGD-gel exhibited significantly enhanced protein yield.

View Article and Find Full Text PDF

There has been a growing interest in RNA therapeutics globally, and much progress has been made in this area, which has been further accelerated by the clinical applications of RNA-based vaccines against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Following these successful clinical trials, various technologies have been developed to improve the efficacy of RNA-based drugs. Multimerization of RNA therapeutics is one of the most attractive approaches to ensure high stability, high efficacy, and prolonged action of RNA-based drugs.

View Article and Find Full Text PDF

Advances in the DNA nanotechnology have enabled the fabrication of DNA-based hydrogels with precisely controlled structures and tunable mechanical and biological properties. Compared to DNA hydrogel, preparation of RNA-based hydrogel remains challenging due to the inherent instability of naked RNA. To overcome these limitations, we fabricated a DNA-RNA hybrid hydrogel via stepwise dual enzymatic polymerization.

View Article and Find Full Text PDF

Cells secrete extracellular vesicles (EVs) to external environments to achieve cellular homeostasis and cell-to-cell communication. Their therapeutic potential has been constantly spotlighted since they mirror both cytoplasmic and membranous components of parental cells. Meanwhile, growing evidence suggests that EV engineering could further promote EVs with a maximized capacity.

View Article and Find Full Text PDF

Control of the release properties of drugs has been considered a key factor in the development of drug delivery systems (DDSs). However, drug delivery has limitations including cytotoxicity, low loading efficiency, and burst release. To overcome these challenges, nano or micro-particles have been suggested as carrier systems to deliver chemical drugs.

View Article and Find Full Text PDF

A novel fabrication method for RNA particles (RPs) was developed based on enzymatic polymerization, and the size of the RPs was controlled intentionally by adjusting the RNA polymerase concentration for a variety of potential applications.

View Article and Find Full Text PDF