The opening of the CLC-0 chloride (Cl) channel is known to be regulated by two gating mechanisms: fast gating and slow (common) gating. The structural basis underlying the fast-gating mechanism is better understood than that of the slow-gating mechanism, which is still largely a mystery. Our previous study on the intracellular proton (H)-induced inhibition of the CLC-0 anionic current led to the conclusion that the inhibition results from the slow-gate closure (also called inactivation).
View Article and Find Full Text PDFThe CLC family encompasses two functional categories of transmembrane proteins: chloride conducting channels and proton-chloride antiporters. All members in this chloride channel/transporter family consist of two identical protein subunits, and each subunit forms an independent ion-transport pathway, a structural architecture known as "double barrel." These CLC proteins serve biological functions ranging from membrane excitability and cell volume regulation to acidification of endosomes.
View Article and Find Full Text PDFIntracellular divalent cations control the molecular function of transmembrane protein 16 (TMEM16) family members. Both anion channels (such as TMEM16A) and phospholipid scramblases (such as TMEM16F) in this family are activated by intracellular Ca in the low µM range. In addition, intracellular Ca or Co at mM concentrations have been shown to further potentiate the saturated Ca-activated current of TMEM16A.
View Article and Find Full Text PDFCLC-0, a prototype Cl- channel in the CLC family, employs two gating mechanisms that control its ion-permeation pore: fast gating and slow gating. The negatively-charged sidechain of a pore glutamate residue, E166, is known to be the fast gate, and the swinging of this sidechain opens or closes the pore of CLC-0 on the millisecond time scale. The other gating mechanism, slow gating, operates with much slower kinetics in the range of seconds to tens or even hundreds of seconds, and it is thought to involve still-unknown conformational rearrangements.
View Article and Find Full Text PDF