Publications by authors named "Hwiwoo Park"

Kagome lattice has been actively studied for the possible realization of frustration-induced two-dimensional flat bands and a number of correlation-induced phases. Currently, the search for kagome systems with a nearly dispersionless flat band close to the Fermi level is ongoing. Here, by combining theoretical and experimental tools, we present ScMnAlSi as a novel realization of correlation-induced almost-flat bands in the kagome lattice in the vicinity of the Fermi level.

View Article and Find Full Text PDF

We propose the regularized recurrent inference machine (rRIM), a novel machine-learning approach to solve the challenging problem of deriving the pairing glue function from measured optical spectra. The rRIM incorporates physical principles into both training and inference and affords noise robustness, flexibility with out-of-distribution data, and reduced data requirements. It effectively obtains reliable pairing glue functions from experimental optical spectra and yields promising solutions for similar inverse problems of the Fredholm integral equation of the first kind.

View Article and Find Full Text PDF

Planckian behavior has been recently observed in LaSrCuO at the pseudogap critical point. The Planckian behavior takes place in an intriguing quantum metallic state at a quantum critical point. Here, the Planckian behavior was simulated with an energy-independent (or flat) and weakly temperature-dependent electron-boson spectral density (EBSD) function by using a generalized Allen's (Shulga's) formula.

View Article and Find Full Text PDF

We investigated the temperature- and frequency-dependent optical scattering rates in the pseudogap phase of cuprates using model pseudogap and electron-boson spectral density (EBSD) functions. We obtained the scattering rates at various temperatures below and above a given pseudogap temperature using a generalized Allen's (or Sharapov's) formula, which has been used to analyse the measured optical spectra of correlated electron systems with a non-constant density of states at finite temperatures. The pseudogap and EBSD functions should be temperature dependent to simulate the Fermi liquid-like behaviour of underdoped cuprate systems observed in optical studies.

View Article and Find Full Text PDF