Recent advancements in single-cell technologies, including single-cell RNA sequencing (scRNA-seq) and Assay for Transposase-Accessible Chromatin using sequencing (scATAC-seq), have greatly improved our insight into the epigenomic landscapes across various biological contexts and diseases. This paper reviews key computational tools and machine learning approaches that integrate scRNA-seq and scATAC-seq data to facilitate the alignment of transcriptomic data with chromatin accessibility profiles. Applying these integrated single-cell technologies in neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease, reveals how changes in chromatin accessibility and gene expression can illuminate pathogenic mechanisms and identify potential therapeutic targets.
View Article and Find Full Text PDFBackground: Understanding gene regulatory networks (GRNs) is essential for unraveling the molecular mechanisms governing cellular behavior. With the advent of high-throughput transcriptome measurement technology, researchers have aimed to reverse engineer the biological systems, extracting gene regulatory rules from their outputs, which represented by gene expression data. Bulk RNA sequencing, a widely used method for measuring gene expression, has been employed for GRN reconstruction.
View Article and Find Full Text PDF