Previously, the authors have identified that c-Met mediates reactivation of the PI3K/AKT pathway following BRAF inhibitor treatment in BRAF (V600E) mutant anaplastic thyroid cancer, thereby contributing to the acquired drug resistance. Therefore dual inhibition of BRAF and c-Met led to sustained treatment response, thereby maximizing the specific anti-tumor effect of targeted therapy. The present study goes one step further and aims to investigate the effect of acquired resistance of BRAF inhibitor on epithelial-to-mesenchymal transition (EMT) in BRAF mutant thyroid cancer cells and the effect of dual inhibition from combinatorial therapy.
View Article and Find Full Text PDFBRAF (V600E) mutation is the most commonly detected genetic alteration in thyroid cancer. Unlike its high treatment response to selective BRAF inhibitor (PLX4032) in metastatic melanoma, the treatment response in thyroid cancer is reported to be low. The purpose of this study is to investigate the resistance mechanism responsible for this low treatment response to BRAF inhibitor in order to maximize the effect of targeted therapy.
View Article and Find Full Text PDFPurpose: Although follicular thyroid cancer (FTC) has a relatively fair prognosis, distant metastasis sometimes results in poor prognosis and survival. There is little understanding of the mechanisms contributing to the aggressiveness potential of thyroid cancer. We showed that hypoxia inducible factor-1α (HIF-1α) induced aggressiveness in FTC cells and identified the underlying mechanism of the HIF-1α-induced invasive characteristics.
View Article and Find Full Text PDF