Publications by authors named "Hwei-Ming Peng"

The two human steroid 5α-reductase (5αR) enzymes catalyze the conversion 3-keto-Δ-steroids to their 5α-reduced congeners. In the genital skin and prostate, the type 2 isoenzyme converts testosterone (T) to the more potent androgen 5α-dihydrotestosterone (DHT), and intracellular DHT is essential for the morphogenesis of the undifferentiated external genitalia to the male phenotype. Both isoenzymes also metabolize other 19- and 21-carbon 3-keto-Δ-steroids, both endogenous compounds and some steroid-based drugs.

View Article and Find Full Text PDF

Osilodrostat (LCI699) is a potent inhibitor of the human steroidogenic cytochromes P450 11β-hydroxylase (CYP11B1) and aldosterone synthase (CYP11B2). LCI699 is FDA-approved for the treatment of Cushing disease, which is characterized by chronic overproduction of cortisol. While phase II and III clinical studies have proven the clinical efficacy and tolerability of LCI699 for treating Cushing disease, few studies have attempted to fully assess the effects of LCI699 on adrenal steroidogenesis.

View Article and Find Full Text PDF

Abiraterone acetate is a first-line therapy for castration-resistant prostate cancer. This prodrug is deacetylated in vivo to abiraterone, which is a potent and specific inhibitor of cytochrome P450 17A1 (CYP17A1). CYP17A1 performs two sequential steps that are required for the biosynthesis of androgens that drive prostate cancer proliferation, analogous to estrogens in breast cancer.

View Article and Find Full Text PDF

The potent androgen 5α-dihydrotestosterone irreversibly derives from testosterone via the activity of steroid 5α-reductases (5αRs). The major 5αR isoforms in most species, 5αR1 and 5αR2, have not been purified to homogeneity. We report here the heterologous expression of polyhistidine-tagged, codon-optimized human 5αR1 and 5αR2 cDNAs in Escherichia coli.

View Article and Find Full Text PDF

Primary adrenal insufficiency (PAI) is a potentially life-threatening condition that can present with nonspecific features and can be difficult to diagnose. We undertook next generation sequencing in a cohort of children and young adults with PAI of unknown etiology from around the world and identified a heterozygous missense variant (rs6161, c.940G>A, p.

View Article and Find Full Text PDF

Unlike most of the drug-metabolizing cytochrome P450s, microsomal P450 17A1 and mitochondrial P450 11B2 catalyze sequential multi-step reactions in steroid biosynthesis. The membrane phospholipid composition might be one parameter that modulates the efficiency and processivity of specific pathways. Here we systematically examined the effects of physiologically relevant phospholipids on the catalysis of purified P450 17A1, P450 11B2, and P450 11B1 in reconstituted assay systems.

View Article and Find Full Text PDF

Background: Dehydroepiandrosterone sulfate (DHEAS) is the most abundant steroid in human circulation, and adrenocorticotropic hormone (ACTH) is considered the major regulator of its synthesis. Pregnenolone sulfate (PregS) and 5-androstenediol-3-sulfate (AdiolS) have recently emerged as biomarkers of adrenal disorders.

Objective: To define the relative human adrenal production of Δ5-steroid sulfates under basal and cosyntropin-stimulated conditions.

View Article and Find Full Text PDF

The mitochondrial cytochromes P450 11B1 and P450 11B2 are responsible for the final stages of cortisol and aldosterone synthesis, respectively. Dysregulation of both enzymes has been implicated in secondary forms of hypertension. Molecular recognition of the cytochromes P450 with their corresponding redox partner is a key step in the catalytic cycle, yet the precise nature of the interaction of P450 11B1 or P450 11B2 with their proximal partner, adrenodoxin (Adx), is still unknown.

View Article and Find Full Text PDF

Human cytochrome P450 17A1 is required for all androgen biosynthesis and is the target of abiraterone, a drug used widely to treat advanced prostate cancer. P450 17A1 catalyzes both 17-hydroxylation and subsequent 17,20-lyase reactions with pregnenolone, progesterone, and allopregnanolone. The presence of cytochrome b5 (b5) markedly stimulates the 17,20-lyase reaction, with little effect on 17-hydroxylation; however, the mechanism of this b5 effect is not known.

View Article and Find Full Text PDF

Integral membrane proteins (IMPs) play crucial roles in all cells and represent attractive pharmacological targets. However, functional and structural studies of IMPs are hindered by their hydrophobic nature and the fact that they are generally unstable following extraction from their native membrane environment using detergents. Here we devise a general strategy for in vivo solubilization of IMPs in structurally relevant conformations without the need for detergents or mutations to the IMP itself, as an alternative to extraction and in vitro solubilization.

View Article and Find Full Text PDF

Some cytochrome P450 enzymes epoxidize unsaturated substrates, but this activity has not been described for the steroid hydroxylases. Physiologic steroid substrates, however, lack carbon-carbon double bonds in the parts of the pregnane molecules where steroidogenic hydroxylations occur. Limited data on the reactivity of steroidogenic P450s toward olefinic substrates exist, and the study of occult activities toward alternative substrates is a fundamental aspect of the growing field of combinatorial biosynthesis.

View Article and Find Full Text PDF

Two acidic residues, Glu-48 and Glu-49, of cytochrome b5 (b5) are essential for stimulating the 17,20-lyase activity of cytochrome P450c17 (CYP17A1). Substitution of Ala, Gly, Cys, or Gln for these two glutamic acid residues abrogated all capacity to stimulate 17,20-lyase activity. Mutations E49D and E48D/E49D retained 23 and 38% of wild-type activity, respectively.

View Article and Find Full Text PDF

Abiraterone acetate is a potent inhibitor of human cytochrome P450c17 (CYP17A1, 17α-hydroxylase/17,20-lyase) and is clinically used in combination with prednisone for the treatment of castration-resistant prostate cancer. Although many studies have documented the potency of abiraterone (Abi) in a variety of in vitro and in vivo systems for several species, the exact potency of Abi for human CYP17A1 enzyme has not yet been determined, and the structural requirements for high-potency steroidal azole inhibitors are not established. We synthesized 4 Abi analogs differing in the A-B ring substitution patterns: 3α-hydroxy-Δ(4)-Abi (13), 3-keto-Δ(4)-Abi (11), 3-keto-5α-Abi (6), and 3α-hydroxy-5α-Abi (5).

View Article and Find Full Text PDF

Conserved human cytochrome b5 (b5) residues D58 and D65 are critical for interactions with CYP2E1 and CYP2C19, whereas E48 and E49 are essential for stimulating the 17,20-lyase activity of CYP17A1. Here, we show that b5 mutations E48G, E49G, D58G, and D65G have reduced capacity to stimulate CYP3A4-catalyzed progesterone and testosterone 6β-hydroxylation or nifedipine oxidation. The b5 double mutation D58G/D65G fails to stimulate these reactions, similar to CYP2E1 and CYP2C19, whereas mutation E48G/E49G retains 23-42% of wild-type stimulation.

View Article and Find Full Text PDF

We sought new strategies to reduce amounts of the polyglutamine androgen receptor (polyQ AR) and achieve benefits in models of spinobulbar muscular atrophy, a protein aggregation neurodegenerative disorder. Proteostasis of the polyQ AR is controlled by the heat shock protein 90 (Hsp90)- and Hsp70-based chaperone machinery, but mechanisms regulating the protein's turnover are incompletely understood. We demonstrate that overexpression of Hsp70 interacting protein (Hip), a co-chaperone that enhances binding of Hsp70 to its substrates, promotes client protein ubiquitination and polyQ AR clearance.

View Article and Find Full Text PDF

The capacity of cytochrome b(5) (b(5)) to influence cytochrome P450 activities has been extensively studied and physiologically validated. Apo-b(5) enhances the activities of CYP3A4, CYP2A6, CYP2C19, and CYP17A1 but not that of CYP2E1 or CYP2D6, suggesting that the b(5) interaction varies among P450s. We previously showed that b(5) residues E48 and E49 are required to stimulate the 17,20-lyase activity of CYP17A1, but these same residues might not mediate b(5) activation of other P450 reactions, such as CYP2E1-catalyzed oxygenations, which are insensitive to apo-b(5).

View Article and Find Full Text PDF

The steroid hydroxylases CYP17A1 (P450c17, 17-hydroxylase/17,20-lyase) and CYP21A2 (P450c21, 21-hydroxylase) catalyze progesterone hydroxylation at one or more sites within a 2 Å radius. We probed their hydrogen atom abstraction mechanisms and regiochemical plasticity with deuterium-labeled substrates: 17-[(2)H]-pregnenolone; 17-[(2)H]-, 16α-[(2)H]-, 21,21,21-[(2)H(3)]-, and 21-[(2)H]-progesterone; and 21,21,21-[(2)H(3)]-17-hydroxyprogesterone. Product distribution and formation rates with recombinant human P450-oxidoreductase and wild-type human CYP17A1 or mutation A105L (reduced progesterone 16α-hydroxylation) and wild-type human CYP21A2 or mutation V359A (substantial progesterone 16α-hydroxylation) were used to calculate intramolecular and intermolecular kinetic isotope effects (KIEs).

View Article and Find Full Text PDF

Like other nitric-oxide synthase (NOS) enzymes, neuronal NOS (nNOS) turnover and activity are regulated by the Hsp90/Hsp70-based chaperone machinery, which regulates signaling proteins by modulating ligand binding clefts (Pratt, W. B., Morishima, Y.

View Article and Find Full Text PDF

We have reported that heme-dependent activation of apo-neuronal nitric oxide synthase (apo-nNOS) to the active holo-enzyme dimer is dependent upon factors present in reticulocyte lysate and other cytosols. Here, we find that both Hsp70 and thioredoxin are components of the activation system. The apo-nNOS activating activity of reticulocyte lysate is retained in a pool of fractions containing Hsp70 that elute from DE52 prior to Hsp90.

View Article and Find Full Text PDF

The Hsp90/Hsp70-based chaperone machinery plays a well-established role in signaling protein function, trafficking and turnover. A number of recent observations also support the notion that Hsp90 and Hsp70 play key roles in the triage of damaged and aberrant proteins for degradation via the ubiquitin-proteasome pathway. In the mid-1990s, it was discovered that Hsp70 is required for ubiquitin-dependent degradation of short-lived and abnormal proteins, and it became clear that inhibition of Hsp90 uniformly leads to the proteasomal degradation of Hsp90 client proteins.

View Article and Find Full Text PDF

The Hsp90/Hsp70-based chaperone machinery regulates the activity and degradation of many signaling proteins. Cycling with Hsp90 stabilizes client proteins, whereas Hsp70 interacts with chaperone-dependent E3 ubiquitin ligases to promote protein degradation. To probe these actions, small molecule inhibitors of Hsp70 would be extremely useful; however, few have been identified.

View Article and Find Full Text PDF

The molecular chaperone hsp90 has emerged as an important therapeutic target in cancer and neurodegenerative diseases, including the polyglutamine expansion disorders, because of its ability to regulate the activity, turnover and trafficking of many proteins. For neurodegenerative disorders associated with protein aggregation, the rationale has been that inhibition of hsp90 by geldanamycin and related compounds activates heat shock factor 1 (HSF1) to induce the production of the chaperones hsp70 and hsp40 that promote disaggregation and protein degradation. However, we show here that geldanamycin blocks the development of aggregates of the expanded glutamine androgen receptor (AR112Q) of Kennedy disease in Hsf1(-/-) mouse embryonic fibroblasts where these chaperones are not induced.

View Article and Find Full Text PDF