Publications by authors named "Hwei-Ling Cheng"

Elicitation of HIV broadly neutralizing antibodies (bnAbs) by vaccination first requires the activation of diverse precursors, followed by successive boosts that guide these responses to enhanced breadth through the acquisition of somatic mutations. Because HIV bnAbs contain mutations in their B cell receptors (BCRs) that are rarely generated during conventional B cell maturation, HIV vaccine immunogens must robustly engage and expand B cells with BCRs that contain these improbable mutations. Here, we engineered an immunogen that activates diverse precursors of an HIV V3-glycan bnAb and promotes their acquisition of a functionally critical improbable mutation.

View Article and Find Full Text PDF

A key barrier to the development of vaccines that induce broadly neutralizing antibodies (bnAbs) against human immunodeficiency virus (HIV) and other viruses of high antigenic diversity is the design of priming immunogens that induce rare bnAb-precursor B cells. The high neutralization breadth of the HIV bnAb 10E8 makes elicitation of 10E8-class bnAbs desirable; however, the recessed epitope within gp41 makes envelope trimers poor priming immunogens and requires that 10E8-class bnAbs possess a long heavy chain complementarity determining region 3 (HCDR3) with a specific binding motif. We developed germline-targeting epitope scaffolds with affinity for 10E8-class precursors and engineered nanoparticles for multivalent display.

View Article and Find Full Text PDF

V(D)J recombination generates mature B cells that express huge repertoires of primary antibodies as diverse immunoglobulin (Ig) heavy chain (IgH) and light chain (IgL) of their B cell antigen receptors (BCRs). Cognate antigen binding to BCR variable region domains activates B cells into the germinal center (GC) reaction in which somatic hypermutation (SHM) modifies primary variable region-encoding sequences, with subsequent selection for mutations that improve antigen-binding affinity, ultimately leading to antibody affinity maturation. Based on these principles, we developed a humanized mouse model approach to diversify an anti-PD1 therapeutic antibody and allow isolation of variants with novel properties.

View Article and Find Full Text PDF

HIV-1 vaccine development aims to elicit broadly neutralizing antibodies (bnAbs) against diverse viral strains. In some HIV-1-infected individuals, bnAbs evolved from precursor antibodies through affinity maturation. To induce bnAbs, a vaccine must mediate a similar antibody maturation process.

View Article and Find Full Text PDF

Introduction: A major goal of HIV-1 vaccine development is the design of immunogens that induce broadly neutralizing antibodies (bnAbs). However, vaccination of humans has not resulted in the induction of affinity-matured and potent HIV-1 bnAbs. To devise effective vaccine strategies, we previously determined the maturation pathway of select HIV-1 bnAbs from acute infection through neutralizing antibody development.

View Article and Find Full Text PDF

The design of immunogens that elicit broadly reactive neutralizing antibodies (bnAbs) has been a major obstacle to HIV-1 vaccine development. One approach to assess potential immunogens is to use mice expressing precursors of human bnAbs as vaccination models. The bnAbs of the VRC01-class derive from the IGHV1-2 immunoglobulin heavy chain and neutralize a wide spectrum of HIV-1 strains via targeting the CD4 binding site of the envelope glycoprotein gp120.

View Article and Find Full Text PDF

Nonalcoholic fatty liver disease is the most common chronic liver disorder in developed countries. Its pathogenesis is poorly understood, and therapeutic options are limited. Here, we show that SIRT7, an NAD(+)-dependent H3K18Ac deacetylase, functions at chromatin to suppress ER stress and prevent the development of fatty liver disease.

View Article and Find Full Text PDF

Although initially viewed as unregulated, increasing evidence suggests that cellular necrosis often proceeds through a specific molecular program. In particular, death ligands such as tumour necrosis factor (TNF)-α activate necrosis by stimulating the formation of a complex containing receptor-interacting protein 1 (RIP1) and receptor-interacting protein 3 (RIP3). Relatively little is known regarding how this complex formation is regulated.

View Article and Find Full Text PDF

Immunoglobulin heavy chain (IgH) variable region exons are assembled from V(H), D and J(H) gene segments in developing B lymphocytes. Within the 2.7-megabase mouse Igh locus, V(D)J recombination is regulated to ensure specific and diverse antibody repertoires.

View Article and Find Full Text PDF

Bright/Arid3a has been characterized both as an activator of immunoglobulin heavy-chain transcription and as a proto-oncogene. Although Bright expression is highly B lineage stage restricted in adult mice, its expression in the earliest identifiable hematopoietic stem cell (HSC) population suggests that Bright might have additional functions. We showed that >99% of Bright(-/-) embryos die at midgestation from failed hematopoiesis.

View Article and Find Full Text PDF

Classical non-homologous DNA end-joining (NHEJ) is a major mammalian DNA double-strand-break (DSB) repair pathway. Deficiencies for classical NHEJ factors, such as XRCC4, abrogate lymphocyte development, owing to a strict requirement for classical NHEJ to join V(D)J recombination DSB intermediates. The XRCC4-like factor (XLF; also called NHEJ1) is mutated in certain immunodeficient human patients and has been implicated in classical NHEJ; however, XLF-deficient mice have relatively normal lymphocyte development and their lymphocytes support normal V(D)J recombination.

View Article and Find Full Text PDF

Ig and T-cell receptor (TCR) variable-region gene exons are assembled from component variable (V), diversity (D) and joining (J) gene segments during early B and T cell development. The RAG1/2 endonuclease initiates V(D)J recombination by introducing DNA double-strand breaks at borders of the germ-line segments. In mice, the Ig heavy-chain (IgH) locus contains, from 5' to 3', several hundred V(H) gene segments, 13 D segments, and 4 J(H) segments within a several megabase region.

View Article and Find Full Text PDF

DNA ligase IV (LIG4) is an essential component of the nonhomologous end-joining (NHEJ) repair pathway and plays a key role in V(D)J recombination. Hypomorphic LIG4 mutations in humans are associated with increased cellular radiosensitivity, microcephaly, facial dysmorphisms, growth retardation, developmental delay, and a variable degree of immunodeficiency. We have generated a knock-in mouse model with a homozygous Lig4 R278H mutation that corresponds to the first LIG4 mutation reported in humans.

View Article and Find Full Text PDF

Human and mouse Ig genes are diversified in mature B-cells by distinct processes known as Ig heavy-chain CSR (class switch recombination) and Ig variable-region exon SHM (somatic hypermutation). These DNA-modification processes are initiated by AID (activation-induced cytidine deaminase), a DNA cytidine deaminase predominantly expressed in activated B-cells. AID is post-transcriptionally regulated via multiple mechanisms, including microRNA regulation, nucleocytoplasmic shuttling, ubiquitination and phosphorylation.

View Article and Find Full Text PDF

Activation-induced cytidine deaminase (AID) is a single-stranded (ss) DNA-specific cytidine deaminase that initiates Ig heavy chain (IgH) class switch recombination (CSR) and Ig somatic hypermutation (SHM) by deaminating cytidines within, respectively, IgH switch (S) regions and Ig variable region (V) exons. AID that is phosphorylated on serine residue 38 interacts with replication protein A (RPA), a ssDNA binding protein, to promote deamination of transcribed double-stranded DNA in vitro, which, along with other evidence, suggests that AID may similarly gain access to transcribed S regions and V exons in vivo. However, the physiological role of AID phosphorylation at serine residue 38 (S38), and even the requirement for the S38 residue, with respect to CSR or SHM has been debated.

View Article and Find Full Text PDF

The RAG1/2 endonuclease initiates programmed DNA rearrangements in progenitor lymphocytes by generating double-strand breaks at specific recombination signal sequences. This process, known as V(D)J recombination, assembles the vastly diverse antigen receptor genes from numerous V, D, and J coding segments. In vitro biochemical and cellular transfection studies suggest that RAG1/2 may also play postcleavage roles by forming complexes with the recombining ends to facilitate DNA end processing and ligation.

View Article and Find Full Text PDF

Mutations in XLF/Cernunnos (XLF) cause lymphocytopenia in humans, and various studies suggest an XLF role in classical nonhomologous end joining (C-NHEJ). We now find that XLF-deficient mouse embryonic fibroblasts are ionizing radiation (IR) sensitive and severely impaired for ability to support V(D)J recombination. Yet mature lymphocyte numbers in XLF-deficient mice are only modestly decreased.

View Article and Find Full Text PDF

Calorie restriction (CR) has been reported to increase SIRT1 protein levels in mice, rats, and humans, and elevated activity of SIRT1 orthologs extends life span in yeast, worms, and flies. In this study, we challenge the paradigm that CR induces SIRT1 activity in all tissues by showing that activity of this sirtuin in the liver is, in fact, reduced by CR and activated by a high-caloric diet. We demonstrate this change both by assaying levels of SIRT1 and its small molecule regulators, NAD and NADH, as well as assessing phenotypes of a liver-specific SIRT1 knockout mouse on various diets.

View Article and Find Full Text PDF

Posttranslational modifications play important roles in regulating protein structure and function. Histone deacetylase 6 (HDAC6) is a mostly cytoplasmic class II HDAC, which has a unique structure with two catalytic domains and a domain binding ubiquitin with high affinity. This enzyme was recently identified as a multisubstrate protein deacetylase that can act on acetylated histone tails, alpha-tubulin and Hsp90.

View Article and Find Full Text PDF

Homologs of the Saccharomyces cerevisiae Sir2 protein, sirtuins, promote longevity in many organisms. Studies of the sirtuin SIRT3 have so far been limited to cell culture systems. Here, we investigate the localization and function of SIRT3 in vivo.

View Article and Find Full Text PDF

Nonhomologous DNA end-joining (NHEJ) is a major pathway of DNA double-strand break (DSB) repair in mammalian cells, and it functions to join both specifically programmed DSBs that occur in the context of V(D)J recombination during early lymphocyte development as well as general DSBs that occur in all cells. Thus, defects in NHEJ impair V(D)J recombination and lead to general genomic instability. In human patients, mutations of Cernunnos-XLF (also called NHEJ1), a recently identified NHEJ factor, underlie certain severe combined immune deficiencies associated with defective V(D)J recombination and radiosensitivity.

View Article and Find Full Text PDF

The mammalian cytoplasmic protein SirT2 is a member of the Sir2 family of NAD+-dependent protein deacetylases involved in caloric restriction-dependent life span extension. We found that SirT2 and its yeast counterpart Hst2 have a strong preference for histone H4K16Ac in their deacetylation activity in vitro and in vivo. We have pinpointed the decrease in global levels of H4K16Ac during the mammalian cell cycle to the G2/M transition that coincides with SirT2 localization on chromatin.

View Article and Find Full Text PDF

The Sir2 histone deacetylase functions as a chromatin silencer to regulate recombination, genomic stability, and aging in budding yeast. Seven mammalian Sir2 homologs have been identified (SIRT1-SIRT7), and it has been speculated that some may have similar functions to Sir2. Here, we demonstrate that SIRT6 is a nuclear, chromatin-associated protein that promotes resistance to DNA damage and suppresses genomic instability in mouse cells, in association with a role in base excision repair (BER).

View Article and Find Full Text PDF

The Saccharomyces cerevisiae chromatin silencing factor Sir2 suppresses genomic instability and extends replicative life span. In contrast, we find that mouse embryonic fibroblasts (MEFs) deficient for SIRT1, a mammalian Sir2 homolog, have dramatically increased resistance to replicative senescence. Extended replicative life span of SIRT1-deficient MEFs correlates with enhanced proliferative capacity under conditions of chronic, sublethal oxidative stress.

View Article and Find Full Text PDF