Publications by authors named "Hwei Ling Khor"

The NOD-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) inflammasome is a cytoplasmic protein complex that mediates inflammatory responses to a broad array of danger signals. The inflammasome drives caspase-1 activation and promotes secretion of the pro-inflammatory cytokines IL-1β and IL-18, and might also participate in other cellular processes. Here, we tried to identify new pathways regulated by the NLRP3 inflammasome in murine dendritic cells (DCs) in response to monosodium urate (MSU) crystals.

View Article and Find Full Text PDF

Ultrathin films of a poly(styrene)-block-poly(2-vinylpyrindine) diblock copolymer (PS-b-P2VP) and poly(styrene)-block-poly(4-vinylpyrindine) diblock copolymer (PS-b-P4VP) were used to form surface-induced nanopattern (SINPAT) on mica. Surface interaction controlled microphase separation led to the formation of chemically heterogeneous surface nanopatterns on dry ultrathin films. Two distinct nanopatterned surfaces, namely, wormlike and dotlike patterns, were used to investigate the influence of topography in the nanometer range on cell adhesion, proliferation, and migration.

View Article and Find Full Text PDF

Biomimetic scaffolds offer great potentials in the development of bone analogs for tissue engineering. The studies presented in this paper focus specifically on the osteogenic potential of the novel PCL/CaP matrices and its degradation behavior. Biodegradable Polymer-ceramic Scaffolds were fabricated using the solid free form fabrication technology: Fused Deposition Modeling (FDM).

View Article and Find Full Text PDF

Solvent-cast sheets of polycaprolactone were biaxially stretched to produce 10-15 microm thick films. PCL films were found to have a tensile strength of 55 MPa which is about two and a half times stronger than native skin. One of our previous studies using non-coated PCL membranes showed that only 36% of the membrane surface was covered with keratinocytes after 9 days of culture.

View Article and Find Full Text PDF

Purpose: Currently, a number of bioresorbable and biodegradable membranes used for guided bone regeneration lead to incomplete tissue regeneration. Poor mechanical properties, short degradation time, and the lack of integrated biologic components result in the inability to create and maintain an appropriate environment and to actively support tissue remodeling. In the present study, the osteogenic potential of human calvarial periosteal cells in combination with ultrathin polycaprolactone (pc2) membranes of a slow biodegradation rate was investigated.

View Article and Find Full Text PDF