Publications by authors named "Hwan Koo"

Electrical Impedance Tomography (EIT) is a medical imaging technique which has the potential to reduce time to treatment in acute stroke by rapidly differentiating between ischaemic and haemorrhagic stroke. The potential of these methods has been demonstrated in simulation and phantoms, it has not yet successfully translated to clinical studies, due to high sensitivity to errors in scalp electrode mislocation and poor electrode-skin contact. To overcome these limitations, a novel electrode helmet was designed, bearing 32 independently controlled self-abrading electrodes.

View Article and Find Full Text PDF

Imaging of neuronal depolarization in the brain is a major goal in neuroscience, but no technique currently exists that could image neural activity over milliseconds throughout the whole brain. Electrical impedance tomography (EIT) is an emerging medical imaging technique which can produce tomographic images of impedance changes with non-invasive surface electrodes. We report EIT imaging of impedance changes in rat somatosensory cerebral cortex with a resolution of 2ms and <200μm during evoked potentials using epicortical arrays with 30 electrodes.

View Article and Find Full Text PDF

Validation and interpretation of reconstructed images using a multi-frequency electrical impedance tomography (mfEIT) requires a conductivity phantom including imaging objects with known complex conductivity (sigma + iomegaepsilon) spectra. We describe imaging experiments using the recently developed mfEIT system called the KHU Mark1 with the frequency range of 10 Hz to 500 kHz. Using a bio-impedance spectroscopy (BIS) system, we first measured complex conductivity spectra of different imaging objects including saline, agar, polyacrylamide, TX151, animal hide gelatin, banana and cucumber.

View Article and Find Full Text PDF

Multi-channel multi-frequency electrical impedance tomography (EIT) systems require a careful calibration to minimize systematic errors. We describe novel calibration methods for the recently developed KHU Mark1 EIT system. Current source calibration includes maximization of output resistance and minimization of output capacitance using multiple generalized impedance converters.

View Article and Find Full Text PDF