Publications by authors named "Hwai-Jong Cheng"

Tissue-clearing and labeling techniques have revolutionized brain-wide imaging and analysis, yet their application to clinical formalin-fixed paraffin-embedded (FFPE) blocks remains challenging. We introduce HIF-Clear, a novel method for efficiently clearing and labeling centimeter-thick FFPE specimens using elevated temperature and concentrated detergents. HIF-Clear with multi-round immunolabeling reveals neuron circuitry regulating multiple neurotransmitter systems in a whole FFPE mouse brain and is able to be used as the evaluation of disease treatment efficiency.

View Article and Find Full Text PDF

The neurosphere assay is the gold standard for determining proliferative and differentiation potential of neural progenitor cells (NPCs) in neurogenesis studies . While several assays have been developed to model the process of neurogenesis, they have predominantly used embryonic and early postnatal NPCs derived from the dentate gyrus (DG). A limitation of these approaches is that they do not provide insight into adult-born NPCs, which are modeled to affect hippocampal function and diseases later in life.

View Article and Find Full Text PDF

Mood disorders are an important public health issue and recent advances in genomic studies have indicated that molecules involved in neurodevelopment are causally related to mood disorders. BLM-s (BCL-2-like molecule, small transcript isoform), a BH3-only proapoptotic BCL-2 family member, mediates apoptosis of postmitotic immature neurons during embryonic cortical development, but its role in the adult brain is unknown. To better understand the physiological role of Blm-s gene in vivo, we generated a Blm-s-knockout (Blm-s) mouse.

View Article and Find Full Text PDF

Mouse hippocampus retains the capacity for neurogenesis throughout lifetime, but such plasticity decreases with age. Adult hippocampal neurogenesis (AHN) involves the birth, maturation, and synaptic integration of newborn granule cells (GCs) into preexisting hippocampal circuitry. While functional integration onto adult-born GCs has been extensively studied, maturation of efferent projections onto CA3 pyramidal cells is less understood, particularly in aged brain.

View Article and Find Full Text PDF

During neural development, growing axons express specific surface receptors in response to various environmental guidance cues. These axon guidance receptors are regulated through intracellular trafficking and degradation to enable navigating axons to reach their targets. In , the UNC-5 receptor is necessary for dorsal migration of developing motor axons.

View Article and Find Full Text PDF

Background: Activity in neurons drives afferent competition that is critical for the refinement of nascent neural circuits. In ferrets, when an eye is lost in early development, surviving retinogeniculate afferents from the spared eye spread across the thalamus in a manner that is dependent on spontaneous retinal activity. However, how this spontaneous activity, also known as retinal waves, might dynamically regulate afferent terminal targeting remains unknown.

View Article and Find Full Text PDF

Visually evoked activity is necessary for the normal development of the visual system. However, little is known about the capacity for patterned spontaneous activity to drive the maturation of receptive fields before visual experience. Retinal waves provide instructive retinotopic information for the anatomical organization of the visual thalamus.

View Article and Find Full Text PDF

Current models of retinogeniculate development have proposed that connectivity between the retina and the dorsal lateral geniculate nucleus (dLGN) is established by gradients of axon guidance molecules, to allow initial coarse connections, and by competitive Hebbian-like processes, to drive eye-specific segregation and refine retinotopy. Here we show that when intereye competition is eliminated by monocular enucleation, blocking cholinergic stage II retinal waves disrupts the intraeye competition-mediated expansion of the retinogeniculate projection and results in the permanent disorganization of its laminae. This disruption of stage II retinal waves also causes long-term impacts on receptive field size and fine-scale retinotopy in the dLGN.

View Article and Find Full Text PDF

The segregation and maintenance of eye-specific inputs in the dorsal lateral geniculate nucleus (dLGN) during early postnatal development requires the patterned spontaneous activity of retinal waves. In contrast to the development of the mouse, ferret eye-specific segregation is not complete at the start of stage III glutamatergic retinal waves, and the remaining overlap is limited to the C/C1 lamina of the dLGN. To investigate the role of patterned spontaneous activity in this late segregation, we disrupted retinal waves pharmacologically for 5 day windows from postnatal day (P) 10 to P25.

View Article and Find Full Text PDF

Background: Spontaneous retinal activity (SRA) is important during eye-specific segregation within the dorsal lateral geniculate nucleus (dLGN), but the feature(s) of activity critical for retinogeniculate refinement are controversial. Pharmacologically or genetically manipulating cholinergic signaling during SRA perturbs correlated retinal ganglion cell (RGC) spiking and disrupts eye-specific retinofugal refinement in vivo, consistent with an instructive role for SRA during visual system development. Paradoxically, ablating the starburst amacrine cells (SACs) that generate cholinergic spontaneous activity disrupts correlated RGC firing without impacting retinal activity levels or eye-specific segregation in the dLGN.

View Article and Find Full Text PDF

Programmed cell death is a pivotal process that regulates neuronal number during development. Key regulators of this process are members of the BCL-2 family. Using mRNA differential display, we identified a Bcl-2 family gene, Blm-s (Bcl-2-like molecule, short form), enriched in postmitotic neurons of the developing cerebral cortex.

View Article and Find Full Text PDF

Cancer cells often employ developmental cues for advantageous growth and metastasis. Here, we report that an axon guidance molecule, Sema3E, is highly expressed in human high-grade ovarian endometrioid carcinoma, but not low-grade or other ovarian epithelial tumors, and facilitates tumor progression. Unlike its known angiogenic activity, Sema3E acted through Plexin-D1 receptors to augment cell migratory ability and concomitant epithelial-to-mesenchymal transition (EMT).

View Article and Find Full Text PDF

Defects in neuronal connectivity of the brain are well documented among schizophrenia patients. Although the schizophrenia susceptibility gene Disrupted-in-Schizophrenia 1 (DISC1) has been implicated in various neurodevelopmental processes, its role in regulating axonal connections remains elusive. Here, a heterologous DISC1 transgenic system in the relatively simple and well-characterized Caenorhabditis elegans motor neurons has been established to investigate whether DISC1 regulates axon guidance during development.

View Article and Find Full Text PDF

Throughout the nervous system, neurons restrict their connections to specific depths or "layers" of their targets to constrain the type and number of synapses they make. Despite the importance of lamina-specific synaptic connectivity, the mechanisms that give rise to this feature in mammals remain poorly understood. Here we examined the cellular events underlying the formation of lamina-specific retinal ganglion cell (RGC) axonal projections to the superior colliculus (SC) of the mouse.

View Article and Find Full Text PDF

Axon pruning and neuronal cell death constitute two major regressive events that enable the establishment of fully mature brain architecture and connectivity. Although the cellular mechanisms for these two events are thought to be distinct, recent evidence has indicated the direct involvement of axon guidance molecules, including semaphorins, netrins, and ephrins, in controlling both processes. Here, we review how axon guidance cues regulate regressive events in paradigmatic models of neural development, from early control of apoptosis of neural progenitors, to later maintenance of neuronal survival and stereotyped pruning of axonal branches.

View Article and Find Full Text PDF

Axon guidance and synapse formation are important developmental events for establishing a functional neuronal circuitry. These two related cellular processes occur in a coordinated fashion but previous studies from multiple model organisms seemed to suggest that axon guidance and synapse formation are mediated by distinct molecular cues. Thus, axon guidance molecules are responsible for guiding the navigating axon toward its target area, while other adhesion or ligand-receptor molecules specify the synapse formation within the target area.

View Article and Find Full Text PDF

Stretch reflex circuits are a prime example of wiring specificity in the vertebrate spinal cord. Homonymous sensory afferents and motoneurons typically form monosynaptic connections, while neurons innervating antagonistic or unrelated muscles do not. Pecho-Vrieseling et al.

View Article and Find Full Text PDF

P21 activated kinase (PAK), PAK interacting exchange factor (PIX), and G protein coupled receptor kinase interactor (GIT) compose a highly conserved signaling module controlling cell migrations, immune system signaling, and the formation of the mammalian nervous system. Traditionally, this signaling module is thought to facilitate the function of RAC and CDC-42 GTPases by allowing for the recruitment of a GTPase effector (PAK), a GTPase activator (PIX), and a scaffolding protein (GIT) as a regulated signaling unit to specific subcellular locations. Instead, we report here that this signaling module functions independently of RAC/CDC-42 GTPases in vivo to control the cell shape and migration of the distal tip cells (DTCs) during morphogenesis of the Caenorhabditis elegans gonad.

View Article and Find Full Text PDF

In vertebrates, class 3 semaphorins (SEMA3) control axon behaviour by binding to neuronal cell surface receptors composed of a ligand binding subunit termed neuropilin (NRP) and a signal transduction subunit of the A-type plexin family (PLXNA). We have determined the requirement for SEMA3/NRP/PLXN signalling in the development of the facial nerve, which contains axons from two motor neuron populations, branchiomotor and visceromotor neurons. Loss of either SEMA3A/NRP1 or SEMA3F/NRP2 caused defasciculation and ectopic projection of facial branchiomotor axons.

View Article and Find Full Text PDF

New neurons are continuously generated in restricted regions of the adult mammalian brain. Although these adult-born neurons have been shown to receive synaptic inputs, little is known about their synaptic outputs. Using retrovirus-mediated birth-dating and labeling in combination with serial section electron microscopic reconstruction, we report that mossy fiber en passant boutons of adult-born dentate granule cells form initial synaptic contacts with CA3 pyramidal cells within 2 weeks after their birth and reach morphologic maturity within 8 weeks in the adult hippocampus.

View Article and Find Full Text PDF

Background: The development of the corticospinal tract (CST) in higher vertebrates relies on a series of axon guidance decisions along its long projection pathway. Several guidance molecules are known to be involved at various decision points to regulate the projection of CST axons. However, previous analyses of the CST guidance defects in mutant mice lacking these molecules have suggested that there are other molecules involved in CST axon guidance that are yet to be identified.

View Article and Find Full Text PDF

Neurons in the developing CNS tend to send out long axon collaterals to multiple target areas. For these neurons to attain specific connections, some of their axon collaterals are subsequently pruned-a process called stereotyped axon pruning. One of the most striking examples of stereotyped pruning in the CNS is the pruning of corticospinal tract (CST) axons.

View Article and Find Full Text PDF

During development, the semaphorin family of guidance molecules is required for proper formation of the sympathetic nervous system. Plexins are receptors that mediate semaphorin signaling, but how plexins function during sympathetic development is not fully understood. Using phenotypic analyses of mutant mice in vivo, expression pattern studies, and in vitro assays, we show that plexin-A3 and plexin-A4 are essential for normal sympathetic development.

View Article and Find Full Text PDF

Adult neurogenesis occurs throughout life in discrete regions of the adult mammalian brain. Little is known about the mechanism governing the sequential developmental process that leads to integration of new neurons from adult neural stem cells into the existing circuitry. Here, we investigated roles of Disrupted-In-Schizophrenia 1 (DISC1), a schizophrenia susceptibility gene, in adult hippocampal neurogenesis.

View Article and Find Full Text PDF