Background: This retrospective study investigated associations of rotator cuff muscle atrophy (MA) and fatty infiltration (FI) with glenoid morphology.
Methods: Patients with primary glenohumeral osteoarthritis who presented to Penn State Bone and Joint Institute's orthopaedic clinic from September 2002 to December 2019 as total shoulder arthroplasty (TSA) candidates were evaluated. MA was determined by the cross-sectional area of each rotator cuff muscle on pre-operative MR and CT scans.
Clin Biomech (Bristol)
March 2024
Background: Dynamic compression plating is a fundamental type of bone fracture fixation used to generate interfragmentary compression. The goal of this study was to investigate the mechanics of the surgical application of these plates, specifically how plate prebend, screw location, fracture gap, and applied torque influence the resulting compressive pressures.
Methods: Synthetic bones with transverse fractures were fixed with locking compression plates.
Dynamic compression plating is a common type of fracture fixation used to compress between bone fragments. The quality of compression across the fracture is important for postoperative stability and primary bone healing. Compression quality may be affected by surgical variations in plate prebend, screw location, screw torque, fracture gap, and implant material.
View Article and Find Full Text PDFMicro-computed tomography (µCT) is the most common imaging modality to characterize the three-dimensional (3D) morphology of bone and newly formed bone during fracture healing in translational science investigations. Studies of long bone fracture healing in rodents typically involve secondary healing and the formation of a mineralized callus. The shape of the callus formed and the density of the newly formed bone may vary substantially between timepoints and treatments.
View Article and Find Full Text PDFGene therapeutic applications combined with bio- and nano-materials have been used to address current shortcomings in bone tissue engineering due to their feasibility, safety and potential capability for clinical translation. Delivery of non-viral vectors can be altered using gene-activated matrices to improve their efficacy to repair bone defects.anddelivery strategies are the most used methods for bone therapy, which have never been directly compared for their potency to repair critical-sized bone defects.
View Article and Find Full Text PDFIntraoperative bioprinting (IOB), which refers to the bioprinting process performed on a live subject in a surgical setting, has made it feasible to directly deliver gene-activated matrices into craniomaxillofacial (CMF) defect sites. In this study, we demonstrated a novel approach to overcome the current limitations of traditionally fabricated non-viral gene delivery systems through direct IOB of bone constructs into defect sites. We used a controlled co-delivery release of growth factors from a gene-activated matrix (an osteogenic bioink loaded with plasmid-DNAs (pDNA)) to promote bone repair.
View Article and Find Full Text PDFReconstruction of complex craniomaxillofacial (CMF) defects is challenging due to the highly organized layering of multiple tissue types. Such compartmentalization necessitates the precise and effective use of cells and other biologics to recapitulate the native tissue anatomy. In this study, intra-operative bioprinting (IOB) of different CMF tissues, including bone, skin, and composite (hard/soft) tissues, is demonstrated directly on rats in a surgical setting.
View Article and Find Full Text PDFJ Am Acad Orthop Surg
January 2022
Introduction: In the surgical fixation of fractures, proper biomechanical stability is key in preventing clinical complications including poor fracture healing, residual deformity, loss of fixation, or implant failure. Stability is largely influenced by treatment decisions made by the surgeon. The interplay of surgeon-controlled variables and their effect on the three-dimensional (3D) biomechanics of a fracture fixation construct are often not intuitive, and current training methods do not facilitate a deep understanding of these interactions.
View Article and Find Full Text PDFPurpose Of Review: Fracture fixation aims to provide stability and promote healing, but remains challenging in unstable and osteoporotic fractures with increased risk of construct failure and nonunion. The first part of this article reviews the clinical motivation behind finite element analysis of fracture fixation, its strengths and weaknesses, how models are developed and validated, and how outputs are typically interpreted. The second part reviews recent modeling studies of the femur and proximal humerus, areas with particular relevance to fragility fractures.
View Article and Find Full Text PDFConventional top-down approaches in tissue engineering involving cell seeding on scaffolds have been widely used in bone engineering applications. However, scaffold-based bone tissue constructs have had limited clinical translation due to constrains in supporting scaffolds, minimal flexibility in tuning scaffold degradation, and low achievable cell seeding density as compared with native bone tissue. Here, we demonstrate a pragmatic and scalable bottom-up method, inspired from embryonic developmental biology, to build three-dimensional (3D) scaffold-free constructs using spheroids as building blocks.
View Article and Find Full Text PDFInternal fixation with the use of locking plates is the standard surgical treatment for proximal humerus fractures, one of the most common fractures in the elderly. Screw cut-out through weak cancellous bone of the humeral head, which ultimately results in collapse of the fixed fracture, is the leading cause of failure and revision surgery. In an attempt to address this problem, surgeons often attach the plate with as many locking screws as possible into the proximal fragment.
View Article and Find Full Text PDFProximal femur fracture fixation with intramedullary nailing relies on stability at the fracture site and integrity of the fixation construct to achieve union. The biomechanics that dictate fracture site stability and implant stress depend on fracture type as well as implant features such as nail length, nail diameter, presence of distal fixation screws, and material composition of the implant. When deciding how to fix a fracture, surgeons have choices in these implant-related design variables.
View Article and Find Full Text PDFA novel technique of "anterior offsetting" of the humeral head component to address posterior instability in total shoulder arthroplasty has been proposed, and its biomechanical benefits have been previously demonstrated experimentally. The present study sought to characterize the changes in joint mechanics associated with anterior offsetting with various amounts of glenoid retroversion using cadaver specimen-specific 3-dimensional finite element models. Specimen-specific computational finite element models were developed through importing digitized locations of six musculotendinous units of the rotator cuff and deltoid muscles based off three cadaveric shoulder specimens implanted with total shoulder arthroplasty in either anatomic or anterior humeral head offset.
View Article and Find Full Text PDFInternal fixation of bone fractures using plates and screws involves many choices-implant type, material, sizes, and geometric configuration-made by the surgeon. These decisions can be important for providing adequate stability to promote healing and prevent implant mechanical failure. The purpose of this study was to develop mathematical models of the relationships between fracture fixation construct parameters and resulting 3D biomechanics, based on parametric computer simulations.
View Article and Find Full Text PDFThe time-course of cancellous bone regeneration surrounding mechanically loaded implants affects implant fixation, and is relevant to determining optimal rehabilitation protocols following orthopaedic surgeries. We investigated the influence of controlled mechanical loading of titanium-coated polyether-ether ketone (PEEK) implants on osseointegration using time-lapsed, non-invasive, in vivo micro-computed tomography (micro-CT) scans. Implants were inserted into proximal tibial metaphyses of both limbs of eight female Sprague-Dawley rats.
View Article and Find Full Text PDFObjectives: The biomechanical difficulty in fixation of a Vancouver B1 periprosthetic fracture is purchase of the proximal femoral segment in the presence of the hip stem. Several newer technologies provide the ability to place bicortical locking screws tangential to the hip stem with much longer lengths of screw purchase compared with unicortical screws. This biomechanical study compares the stability of 2 of these newer constructs to previous methods.
View Article and Find Full Text PDFAseptic loosening of cemented joint replacements is a complex biological and mechanical process, and remains a clinical concern especially in patients with poor bone quality. Utilizing high resolution finite element analysis of a series of implanted cadaver glenoids, the objective of this study was to quantify relationships between construct morphology and resulting mechanical stresses in cement and trabeculae. Eight glenoid cadavers were implanted with a cemented central peg implant.
View Article and Find Full Text PDFThe load absorbing capability of the foot and ankle system (FAS) was characterized by measuring the transmissibility and the phase delay at the medial malleolus and the tibial tuberosity. The FAS of twenty subjects were exposed to sinusoidal vertical excitation (10-50 Hz with 5 Hz increments and peak to peak acceleration of 17.9 m/s(2)) while sitting as a function of the external mass (0, 2.
View Article and Find Full Text PDF