In the past two decades, Micro Fluidic Systems (MFS) have emerged as a powerful tool for biosensing, particularly in enriching and purifying molecules and cells in biological samples. Compared with conventional sensing techniques, distinctive advantages of using MFS for biomedicine include ultra-high sensitivity, higher throughput, in-situ monitoring and lower cost. This review aims to summarize the recent advancements in two major types of micro fluidic systems, continuous and discrete MFS, as well as their biomedical applications.
View Article and Find Full Text PDFThis paper proposes a facile method to fabricate nanoporous microstructures by a photo-patternable SU-8 photoresist, to serve as a molecular filter in microfluidic systems. The fabrication process involves solvent-controlled nanoporous structure formation combined with standard photolithography steps for microstructure fabrication. The self-formed nanoporous morphology embedded inside the microstructure exhibits a sufficient mechanical strength and eliminates complex processes or protocols for integration/assembly of nano- and microstructures.
View Article and Find Full Text PDFThree-dimensional nano-architectures with varying shape, morphology and size were fabricated by the phase separation of methyltrichlorosilane (CH(3)SiCl(3)) on commercially available glass and SiO(2) substrates. By changing the synthesis conditions, CH(3)SiCl(3) nanostructures evolved from discrete to quasi-network or from fibrous to spherical forms. Individual nanofibers and nanospheres have diameters of 18-90 and 240-300 nm, respectively, while the film thicknesses could reach 320 nm.
View Article and Find Full Text PDF