Insect Biochem Mol Biol
November 2019
Mycoplasmas, the smallest self-replicating organisms, are unique in that they lack cell walls but possess distinctive plasma membranes containing sterol acquired from their growth environment. Although mycoplasmas are known to be successful pathogens in a wide range of animal hosts, including humans, the molecular basis for their virulence and interaction with the host immune systems remains largely unknown. This study was conducted to elucidate the biochemical relationship between mycoplasma and the insect immune system.
View Article and Find Full Text PDFApolipophorin-III (apoLp-III) is a hemolymph protein whose function is to facilitate lipid transport in an aqueous medium. Recently, apoLp-III in Galleria mellonella larvae was shown to play an unexpected role in insect immune activation. We identified the cDNA sequence of Hyphantria cunea apoLp-III by oligonucleotide-primed amplification, and 5'- and 3'-RACE PCR.
View Article and Find Full Text PDFThis work analyzed the process of lipid storage in fat body of larval Manduca sexta, focusing on the role of lipid transfer particle (LTP). Incubation of fat bodies with [(3)H]diacylglycerol-labeled lipophorin resulted in a significant accumulation of diacylglycerol (DAG) and triacylglycerol (TAG) in the tissue. Transfer of DAG to fat body and its storage as TAG was significantly inhibited (60%) by preincubating the tissue with anti-LTP antibody.
View Article and Find Full Text PDFThe objective of this study was to characterize the transfer of cholesterol from Manduca sexta larvae fat body to high-density lipophorin. [(3)H]-Cholesterol-labeled fat body was incubated with lipophorin under different conditions and cholesterol transfer was determined. Transfer rate exhibited a hyperbolic dependency on lipophorin concentration with an apparent K(m) of 3.
View Article and Find Full Text PDFInsect Biochem Mol Biol
September 2002
Using in vitro methods, we investigated the transfer of cholesterol from larval Manduca sexta midgut to the hemolymph lipoprotein, lipophorin, and the transfer of cholesterol from lipophorin to larval fat body. In the midgut, transfer of free cholesterol shows saturation kinetics, but the apparent Km is higher than the measured Kd for the midgut lipophorin-receptor complex. In addition, the transfer is unaffected by suramin, which binds to the receptor and inhibits lipophorin binding, and by antibodies to the lipid transfer particle, which is required for export of diacylglycerol from the midgut to lipophorin.
View Article and Find Full Text PDF