In this study, a low-cost, software-defined Global Positioning System (GPS) and Satellite-Based Augmentation System (SBAS) Reflectometry (GPS&SBAS-R) system has been built and proposed to measure ocean-surface wave parameters on board the research vessel New Ocean Researcher 1 (R/V NOR-1) of Taiwan. A power-law, ocean-wave spectrum model has been used and applied with the Small Perturbation Method approach to solve the electromagnetic wave scattering problem from rough ocean surface, and compared with experimental seaborne GPS&SBAS-R observations. Meanwhile, the intensity scintillations of high-sampling GPS&SBAS-R signal acquisition data are thought to be caused by the moving of rough surfaces of the targeted ocean.
View Article and Find Full Text PDFReal-time, continuous, and long-term marine monitoring data benefits ocean research. This study developed a low-cost, multi-parameter, miniature wave buoy. High spatial and temporal resolution of sea surface parameters, including wind, waves, and current, can be obtained at low cost through the deployment of numerous buoys, thus forming an observation array.
View Article and Find Full Text PDF