Publications by authors named "Huy Tuong Cao"

The detectors of the laser interferometer gravitational-wave observatory (LIGO) are broadly limited by the quantum noise and rely on the injection of squeezed states of light to achieve their full sensitivity. Squeezing improvement is limited by mode mismatch between the elements of the squeezer and the interferometer. In the current LIGO detectors, there is no way to actively mitigate this mode mismatch.

View Article and Find Full Text PDF

Differential wavefront sensing is an essential technique for optimising the performance of many precision interferometric experiments. Perhaps the most extensive application of this is for alignment sensing using radio-frequency beats measured with quadrant photodiodes. Here we present a new technique that uses optical demodulation to measure such optical beats at high resolutions using commercial laboratory equipment.

View Article and Find Full Text PDF

Small, highly absorbing points are randomly present on the surfaces of the main interferometer optics in Advanced LIGO. The resulting nanometer scale thermo-elastic deformations and substrate lenses from these micron-scale absorbers significantly reduce the sensitivity of the interferometer directly though a reduction in the power-recycling gain and indirect interactions with the feedback control system. We review the expected surface deformation from point absorbers and provide a pedagogical description of the impact on power buildup in second generation gravitational wave detectors (dual-recycled Fabry-Perot Michelson interferometers).

View Article and Find Full Text PDF

We report the design and testing of a compression-biased thermally-actuated deformable mirror that has a dynamic range larger than the limit imposed by pure-bending stress, negligible higher-order-mode scattering, and a linear defocus response and that is vacuum compatible. The optimum design principles for this class of actuator are described and a mirror with 370 mD dynamic range is demonstrated.

View Article and Find Full Text PDF

Knowledge of the intensity and phase profiles of spectral components in a coherent optical field is critical for a wide range of high-precision optical applications. One of these is interferometric gravitational wave detectors, which rely on the optical beats between these fields for precise control of the experiment. Here we describe an optical lock-in camera and show that it can be used to record optical beats at MHz or greater frequencies with higher spatial and temporal resolution than previously possible.

View Article and Find Full Text PDF

Adaptive optics are crucial for overcoming the fabrication limits on mirror curvature in high-precision interferometry. We describe a low-cost thermally actuated bimorph mirror with 200 mD linear response, which meets dynamic range and low aberration requirements for the ${\rm{A}} + $A+ upgrade of the Laser Interferometer Gravitational-wave Observatory (LIGO). Its deformation and operation limits were measured and verified against finite element simulation.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: