Publications by authors named "Huy Riem Ha"

Ebola virus disease (EVD) is one of the most lethal transmissible infections characterized by a high fatality rate, and a treatment has not been developed yet. Recently, it has been shown that cationic amphiphiles, among them the antiarrhythmic drug amiodarone, inhibit filovirus infection. In the present work, we investigated how amiodarone interferes with Ebola virus infection.

View Article and Find Full Text PDF

Patients treated with amiodarone accumulate lysobisphosphatidic acid (LBPA), also known as bis(monoacylglycero)phosphate, in airway secretions and develop in different tissues vacuoles and inclusion bodies thought to originate from endosomes. To clarify the origin of these changes, we studied in vitro the effects of amiodarone on endosomal activities like transferrin recycling, Shiga toxin processing, ESCRT-dependent lentivirus budding, fluid phase endocytosis, proteolysis and exosome secretion. Furthermore, since the accumulation of LBPA might point to a broader disturbance in lipid homeostasis, we studied the effect of amiodarone on the distribution of LBPA, unesterified cholesterol, sphingomyelin and glycosphyngolipids.

View Article and Find Full Text PDF

The two proteases beta-secretase and gamma-secretase generate the amyloid beta peptide and are drug targets for Alzheimer's disease. Here we tested the possibility of targeting the cellular environment of beta-secretase cleavage instead of the beta-secretase enzyme itself. beta-Secretase has an acidic pH optimum and cleaves the amyloid precursor protein in the acidic endosomes.

View Article and Find Full Text PDF

Amiodarone interferes with the endocytic pathway, inhibits proteolysis, and causes the formation of vacuoles, but uptake and intracellular distribution of the drug, origin of vacuoles, and functional consequences of amiodarone accumulation remain unclear. Our objective was to study amiodarone uptake, clarify the origin of vacuoles, and investigate the effect of amiodarone on the life cycle of the coronavirus responsible for the Severe Acute Respiratory Syndrome (SARS), which, to enter cells, relies on the proteolytic cleavage of a viral spike protein by the endosomal proteinase cathepsin L. Using alveolar macrophages, we studied uptake of (125)I-amiodarone and (125)I-B2, an analog lacking the lateral group diethylamino-beta-ethoxy, and analyzed the effects of amiodarone on the distribution of endosomal markers and on the uptake of an acidotropic dye.

View Article and Find Full Text PDF

Sexual dimorphisms of atherosclerosis and the susceptibility to arrhythmias and antiarrhythmic treatment have been reported. This study investigated acute effects of amiodarone on endothelium-dependent relaxation in the aorta of male and female apoE0 mice with advanced atherosclerosis. Amiodarone tissue uptake was quantified by high-performance liquid chromatography, and xanthine oxidase-dependent superoxide anion formation was investigated in vitro in presence or absence of amiodarone.

View Article and Find Full Text PDF

Objective: Microparticles are small vesicles that are released from activated or dying cells and that occur abundantly in the synovial fluid of patients with rheumatoid arthritis (RA). The goal of these studies was to elucidate the mechanisms by which microparticles activate synovial fibroblasts to express a proinflammatory phenotype.

Methods: Microparticles from monocytes and T cells were isolated by differential centrifugation.

View Article and Find Full Text PDF

Amiodarone (AMI) is a potent antiarrhythmic agent; however, its clinical use is limited due to numerous side effects. In order to investigate the structure--cytotoxicity relationship, AMI analogues were synthesized, and then, using rabbit alveolar macrophages, were tested for viability and for the ability to interfere with the degradation of surfactant protein A (SP-A) and with the accumulation of an acidotropic dye. Our data revealed that modification of the diethylamino-beta-ethoxy group of the AMI molecule may affect viability, the ability to degrade SP-A and vacuolation differently.

View Article and Find Full Text PDF

The aim of this work was to compare hepatocellular toxicity and pharmacological activity of amiodarone (2-n-butyl-3-[3,5 diiodo-4-diethylaminoethoxybenzoyl]-benzofuran; B2-O-Et-N-diethyl) and of eight amiodarone derivatives. Three amiodarone metabolites were studied, namely, mono-N-desethylamiodarone (B2-O-Et-NH-ethyl), di-N-desethylamiodarone (B2-O-Et-NH(2)), and (2-butyl-benzofuran-3-yl)-(4-hydroxy-3,5-diiodophenyl)-methanone (B2) carrying an ethanol side chain [(2-butylbenzofuran-3-yl)-[4-(2-hydroxyethoxy)-3,5-diiodophenyl]-methanone; B2-O-Et-OH]. In addition, five amiodarone analogs were investigated, namely, N-dimethylamiodarone (B2-O-Et-N-dimethyl), N-dipropylamiodarone (B2-O-Et-N-dipropyl), B2-O-carrying an acetate side chain [[4-(2-butyl-benzofuran-3-carbonyl)-2,6-diiodophenyl]-acetic acid; B2-O-acetate], B2-O-Et carrying an propionamide side chain (B2-O-Et-propionamide), and B2-O carrying an ethyl side chain [(2-butylbenzofuran-3-yl)-(4-ethoxy-3,5-diiodophenyl)-methanone; B2-O-Et].

View Article and Find Full Text PDF

In mammals, mono-N-desethylamiodarone (MDEA) is the only known metabolite of amiodarone. Our previous experiments demonstrated that in vitro MDEA may be hydroxylated, N-dealkylated, and deaminated. In this report, we investigated the concentration of these microsomal metabolites in the plasma of patients receiving amiodarone.

View Article and Find Full Text PDF

Antiarrhythmics are a group of drugs that manage the irregular electrical activity of the heart. Their use in the clinic is made difficult by their narrow therapeutic index. The disposition of antiarrhythmics is dependent on many factors, such as administration route, stereoselectivity in the first-pass effect, inhibition of enzymes, polymorphisms, etc.

View Article and Find Full Text PDF

Amiodarone, an antiarrhythmic drug toxic toward the lung, is metabolized through sequential modifications of the diethylaminoethoxy group to mono-N-desethylamiodarone (MDEA), di-N-desethylamiodarone (DDEA), and amiodarone-EtOH (B2-O-EtOH), whose effects on lung cells are unclear. To clarify this, we exposed rabbit alveolar macrophages to analogs with different modifications of the diethylaminoethoxy group and then searched for biochemical signs of cell damage, formation of vacuoles and inclusion bodies, and interference with the degradation of surfactant protein A, used as a tracer of the endocytic pathway. The substances studied included MDEA, DDEA, and B2-O-EtOH, analogs with different modifications of the diethylaminoethoxy group, fragments of the amiodarone molecule, and the antiarrhythmic agents dronedarone (SR-33589) and KB-130015.

View Article and Find Full Text PDF

The antibiotics rifamycin SV and rifampicin substantially reduce sulfobromophthalein (BSP) elimination in humans. In rats, rifamycin SV and rifampicin were shown to interfere with hepatic organic anion uptake by inhibition of the organic anion transporting polypeptides Oatp1 and Oatp2. Therefore, we investigated the effects of rifamycin SV and rifampicin on the OATPs of human liver and determined whether rifampicin is a substrate of 1 or several of these carriers.

View Article and Find Full Text PDF