Publications by authors named "Huy Quang Tran"

Electrospun nanofibers have proven versatile across numerous fields, including environmental, energy, and biomedical applications. Typically, however, electrospun nanofiber materials are fabricated as two-dimensional sheets, membranes, or mats. In this study, a straightforward and adaptable foaming method is presented to create three-dimensional microsphere-nanofiber composite structures.

View Article and Find Full Text PDF

Although berberine (BBR) is well known as an active constituent in traditional medicines used in the treatment of gastrointestinal diseases, its potential against viral gastroenteritis has not been specifically reported. This study aims to investigate the antiviral activity of BBR against rotavirus and evaluate its cytotoxicity and pharmacological efficacies, including antioxidant and anti-inflammatory activities in vitro. Using ultraviolet-visible absorption spectroscopy, the saturation concentration of BBR was determined as 2261 μg/mL, indicating that BBR is a poor water-soluble compound.

View Article and Find Full Text PDF

In this study, a multifunctional composite membrane based on polycaprolactone nanofibers having controlled drug release, shape memory effect, and antibacterial ability was successfully prepared by the electrospinning technique. The addition of graphene oxide (GO), zinc oxide nanoparticles (ZnO NPs), polyethylene glycol (PEG), and berberine (BBR) strongly affected the morphology, crystalline degree, melting temperature, and shape memory performance of the composite membrane, thanks to the physical crosslinking network formed by the hydrogen bonding or van der Waals interactions between the components. As a result, the recovery ratio of the composite membrane reached a higher value (76.

View Article and Find Full Text PDF

The use of decellularized extracellular matrix products in tissue regeneration is quite alluring yet practically challenging due to the limitations of its availability, harsh processing techniques, and host rejection. Scaffolds obtained by either incorporating extracellular matrix (ECM) material or coating the surface can resolve these challenges to some extent. However, these scaffolds lack the complex 3D network formed by proteins and growth factors observed in natural ECM.

View Article and Find Full Text PDF

Multiphasic scaffolds with tailored gradient features hold significant promise for tissue regeneration applications. Herein, this work reports the transformation of two-dimensional (2D) layered fiber mats into three dimensional (3D) multiphasic scaffolds using a 'solids-of-revolution' inspired gas-foaming expansion technology. These scaffolds feature precise control over fiber alignment, pore size, and regional structure.

View Article and Find Full Text PDF

Hydrophobic berberine powder (BBR) and hydrophilic BBR nanoparticles (BBR NPs) were loaded into an electrospun polylactic acid (PLA) nanofiber scaffold for modulating the release behavior of BBR in an aqueous medium. The BBR release from the BBR/PLA and BBR NPs/PLA nanofiber scaffolds was investigated in relation to their chemical characteristics, BBR dispersion into nanofibers, and wettability. The BBR release profiles strongly influenced the antibacterial efficiency of the scaffolds over time.

View Article and Find Full Text PDF

This work reports the use of mesoporous silica rods as templates for the step-wise preparation of multifunctional FeO NPs filled polydopamine hollow rods (FeO@PDA HR). The capacity of as-synthesized FeO@PDA HR as a new drug carrier platform was assessed by its loading and the triggered release of fosfomycin under various stimulations. It was found that the release of fosfomycin was pH dependent with ~89% of fosfomycin being released in pH 5 after 24 h, which was 2-fold higher than that in pH 7.

View Article and Find Full Text PDF

Nowadays, the wound dressing is no longer limited to its primary wound protection ability. Hydrogel, sponge-like material, three dimensional-printed mesh, and nanofiber-based dressings with incorporation of functional components, such as nanomaterials, growth factors, enzymes, antimicrobial agents, and electronics, are able to not only prevent/treat infection but also accelerate the wound healing and monitor the wound-healing status. The advances in nanotechnologies and materials science have paved the way to incorporate various functional components into the dressings, which can facilitate wound healing and monitor different biological parameters in the wound area.

View Article and Find Full Text PDF

Herein, we present a systematic study on the preparation of polydopamine (PDA) hollow capsules by templating silica particles which were subsequently removed by a PDA mediated water dissolution process without using any harsh chemical treatment. It was found that the time required for silica removal varied depending on the PDA coating and dissolution conditions. Factors that could influence the core removal process including the PDA thickness and coating temperature, silica calcination duration and the availability of water were then examined in detail.

View Article and Find Full Text PDF

Although the structure and dynamics of planktonic viruses in freshwater and seawater environments are relatively well documented, little is known about the occurrence and activity of these viruses in estuaries, especially in the tropics. Viral abundance, life strategies, and morphotype distribution were examined in the Bach Dang Estuary (Vietnam) during the dry season in 2009. The abundance of both viruses and their prokaryotic hosts decreased significantly from upstream to downstream, probably as the result of nutrient dilution and osmotic stress faced by the freshwater communities.

View Article and Find Full Text PDF