Publications by authors named "Huxtable A"

Article Synopsis
  • Infants exposed to opioids often develop Neonatal Abstinence Syndrome (NAS), which can lead to serious health issues, including respiratory distress.
  • Research suggests that maternal opioids impair neonatal central respiratory control networks, affecting the brainstem and spinal cord's ability to regulate breathing.
  • The study found that these impairments are linked to lingering opioids in the neonatal system and changes in opioid receptor expression, resulting in age-dependent blunted responses to both maternal and exogenous opioids.
View Article and Find Full Text PDF

Endotherms in cold regions improve heat-producing capacity when preparing for winter. We know comparatively little about how this change is fueled by seasonal adaptation in cellular respiration. Thus, we studied the changes of mitochondrial function in red blood cells in sympatric Coal (Periparus ater), Blue (Cyanistes caeruleus), and Great (Parus major) tits between autumn and winter.

View Article and Find Full Text PDF
Article Synopsis
  • The rise in opioid use during pregnancy presents significant risks to both the mother and the developing infant, leading to negative outcomes such as respiratory issues and even death.
  • Maternal opioid exposure has been shown to disrupt neonatal respiratory stability, resulting in increased apneas and altered responses to opioids in newborns, which differs from adult responses.
  • This research highlights the critical developmental changes in respiratory circuitry and suggests that maternal opioid use may have lasting effects on the respiratory health of infants, emphasizing the need for further study and treatment strategies for this vulnerable population.
View Article and Find Full Text PDF

Magnetic skyrmions are topologically non-trivial nanoscale objects. Their topology, which originates in their chiral domain wall winding, governs their unique response to a motion-inducing force. When subjected to an electrical current, the chiral winding of the spin texture leads to a deflection of the skyrmion trajectory, characterised by an angle with respect to the applied force direction.

View Article and Find Full Text PDF

The respiratory control network in the central nervous system undergoes critical developmental events early in life to ensure adequate breathing at birth. There are at least three "critical windows" in development of respiratory control networks: 1) in utero, 2) newborn (postnatal day 0-4 in rodents), and 3) neonatal (P10-13 in rodents, 2-4 months in humans). During these critical windows, developmental processes required for normal maturation of the respiratory control network occur, thereby increasing vulnerability of the network to insults, such as inflammation.

View Article and Find Full Text PDF

Neonatal respiratory impairment during infection is common, yet its effects on respiratory neural circuitry are not fully understood. We hypothesized that the timing and severity of systemic inflammation is positively correlated with impairment in neonatal respiratory activity. To test this, we evaluated time- and dose-dependent impairment of in vitro fictive respiratory activity.

View Article and Find Full Text PDF

Magnetic skyrmions are topological solitons promising for applications as encoders for digital information. A number of different skyrmion-based memory devices have been recently proposed. In order to demonstrate a viable skyrmion-based memory device, it is necessary to reliably and reproducibly nucleate, displace, detect, and delete the magnetic skyrmions, possibly in the absence of external applied magnetic fields, which would needlessly complicate the device design.

View Article and Find Full Text PDF

Professional sporting organisations can provide lifestyle-based community health improvement programs. Since 2014, the Western Bulldogs Australian Football League Club, through its Western Bulldogs Community Foundation (WBCF), has invested with community partners in the Sons of the West (SOTW) Program, a 10-week program targeted at hard-to-reach men aged ≥18 years living in Victoria's West. The SOTW Program aims to increase its participants' physical activity, social connectedness and overall health.

View Article and Find Full Text PDF

Inflammation arises from diverse stimuli eliciting distinct inflammatory profiles, yet little is known about the effects of different inflammatory stimuli on respiratory motor plasticity. Respiratory motor plasticity is a key feature of the neural control of breathing and commonly studied in the form of phrenic long-term facilitation (pLTF). At least two distinct pathways can evoke pLTF with differential sensitivities to bacterial-induced inflammation.

View Article and Find Full Text PDF

Neonatal inflammation is common and has lasting consequences for adult health. We investigated the lasting effects of a single bout of neonatal inflammation on adult respiratory control in the form of respiratory motor plasticity induced by acute intermittent hypoxia, which likely compensates and stabilizes breathing during injury or disease and has significant therapeutic potential. Lipopolysaccharide-induced inflammation at postnatal day four induced lasting impairments in two distinct pathways to adult respiratory plasticity in male and female rats.

View Article and Find Full Text PDF

Plasticity is an important aspect of the neural control of breathing. One well-studied form of respiratory plasticity is phrenic long-term facilitation (pLTF) induced by acute intermittent but not sustained hypoxia. Okadaic acid-sensitive protein phosphatases (PPs) differentially regulate phrenic nerve activity with intermittent vs.

View Article and Find Full Text PDF

Childhood obesity is a significant health issue worldwide. Modifiable risk factors in early childhood relate to child healthy eating and active play, and are influenced by parents. The aim of the study was two-fold.

View Article and Find Full Text PDF

Inflammation undermines respiratory motor plasticity, yet we are just beginning to understand the inflammatory signaling involved. Because interleukin-1 (IL-1) signaling promotes or inhibits plasticity in other central nervous system regions, we tested the following hypotheses: 1) IL-1 receptor (IL-1R) activation after systemic inflammation is necessary to undermine phrenic long-term facilitation (pLTF), a model of respiratory motor plasticity induced by acute intermittent hypoxia (AIH), and 2) spinal IL-1β is sufficient to undermine pLTF. pLTF is significantly reduced 24 h after lipopolysaccharide (LPS; 100 μg/kg ip, 12 ± 18%, n = 5) compared with control (57 ± 25%, n = 6) and restored by peripheral IL-1R antagonism (63 ± 13%, n = 5, AF-12198, 0.

View Article and Find Full Text PDF

Although inflammation is prevalent in many clinical disorders challenging breathing, we are only beginning to understand the impact of inflammation on neural mechanisms of respiratory control. We recently demonstrated one form of respiratory motor plasticity is extremely sensitive to even mild inflammation induced by a single night (8 h) of intermittent hypoxia (IH-1), mimicking aspects of obstructive sleep apnea. Specifically, phrenic long-term facilitation (pLTF) following moderate acute intermittent hypoxia (AIH) is abolished by IH-1, but restored by high doses of the non-steroidal anti-inflammatory drug, ketoprofen.

View Article and Find Full Text PDF

Sleep disordered breathing (SDB) and obstructive sleep apnea (OSA) during pregnancy are growing health concerns because these conditions are associated with adverse outcomes for newborn infants. SDB/OSA during pregnancy exposes the mother and the fetus to intermittent hypoxia. Direct exposure of adults and neonates to IH causes neuroinflammation and neuronal apoptosis, and exposure to IH during gestation (GIH) causes long-term deficits in offspring respiratory function.

View Article and Find Full Text PDF

Breathing is a vital homeostatic behavior and must be precisely regulated throughout life. Clinical conditions commonly associated with inflammation, undermine respiratory function may involve plasticity in respiratory control circuits to compensate and maintain adequate ventilation. Alternatively, other clinical conditions may evoke maladaptive plasticity.

View Article and Find Full Text PDF

Acute intermittent hypoxia (AIH) induces a form of spinal motor plasticity known as phrenic long-term facilitation (pLTF); pLTF is a prolonged increase in phrenic motor output after AIH has ended. In anesthetized rats, we demonstrate that pLTF requires activity of the novel PKC isoform, PKCθ, and that the relevant PKCθ is within phrenic motor neurons. Whereas spinal PKCθ inhibitors block pLTF, inhibitors targeting other PKC isoforms do not.

View Article and Find Full Text PDF

Inflammation is characteristic of most clinical disorders that challenge the neural control of breathing. Since inflammation modulates neuroplasticity, we studied the impact of inflammation caused by prolonged intermittent hypoxia on an important form of respiratory plasticity, acute intermittent hypoxia (three, 5 min hypoxic episodes, 5 min normoxic intervals) induced phrenic long-term facilitation (pLTF). Because chronic intermittent hypoxia elicits neuroinflammation and pLTF is undermined by lipopolysaccharide-induced systemic inflammation, we hypothesized that one night of intermittent hypoxia (IH-1) elicits spinal inflammation, thereby impairing pLTF by a p38 MAP kinase-dependent mechanism.

View Article and Find Full Text PDF

PreBötzinger complex inspiratory rhythm-generating networks are excited by metabotropic purinergic receptor subtype 1 (P2Y1R) activation. Despite this, and the fact that inspiratory MNs express P2Y1Rs, the role of P2Y1Rs in modulating motor output is not known for any MN pool. We used rhythmically active brainstem-spinal cord and medullary slice preparations from neonatal rats to investigate the effects of P2Y1R signalling on inspiratory output of phrenic and XII MNs that innervate diaphragm and airway muscles, respectively.

View Article and Find Full Text PDF

Acute intermittent hypoxia (AIH; three 5-min hypoxic episodes) causes a form of phrenic motor facilitation (pMF) known as phrenic long-term facilitation (pLTF); pLTF is initiated by spinal activation of Gq protein-coupled 5-HT2 receptors. Because α1 adrenergic receptors are expressed in the phrenic motor nucleus and are also Gq protein-coupled, we hypothesized that α1 receptors are sufficient, but not necessary for AIH-induced pLTF. In anesthetized, paralyzed, and ventilated rats, episodic spinal application of the α1 receptor agonist phenylephrine (PE) elicited dose-dependent pMF (10 and 100 μM, P < 0.

View Article and Find Full Text PDF

As in other neural systems, plasticity is a hallmark of the neural system controlling breathing. One spinal mechanism of respiratory plasticity is phrenic long-term facilitation (pLTF) following acute intermittent hypoxia. Although cellular mechanisms giving rise to pLTF occur within the phrenic motor nucleus, different signaling cascades elicit pLTF under different conditions.

View Article and Find Full Text PDF

Although systemic inflammation occurs in most pathological conditions that challenge the neural control of breathing, little is known concerning the impact of inflammation on respiratory motor plasticity. Here, we tested the hypothesis that low-grade systemic inflammation induced by lipopolysaccharide (LPS, 100 μg/kg ip; 3 and 24 h postinjection) elicits spinal inflammatory gene expression and attenuates a form of spinal, respiratory motor plasticity: phrenic long-term facilitation (pLTF) induced by acute intermittent hypoxia (AIH; 3, 5 min hypoxic episodes, 5 min intervals). pLTF was abolished 3 h (vehicle control: 67.

View Article and Find Full Text PDF
Article Synopsis
  • Isolated in vitro brainstem-spinal cord preparations are valuable for studying respiratory neurobiology because they maintain the intact respiratory network and allow for targeted experimentation.
  • Although there are known limitations to these preparations, they remain useful for investigating neuronal connectivity, motor network development, and the effects of drugs and conditions on spinal motoneurons.
  • The aim is to highlight the ongoing scientific relevance of these preparations for addressing various questions in and beyond respiratory research.
View Article and Find Full Text PDF

Many lung and central nervous system disorders require robust and appropriate physiological responses to assure adequate breathing. Factors undermining the efficacy of ventilatory control will diminish the ability to compensate for pathology, threatening life itself. Although most of these same disorders are associated with systemic and/or neuroinflammation, and inflammation affects neural function, we are only beginning to understand interactions between inflammation and any aspect of ventilatory control (e.

View Article and Find Full Text PDF