Publications by authors named "Huwei Liu"

Herbal patches are widely used in clinics for their good curative effects. However, due to the complexity of plant matrices and the extremely low content of transdermal components, the individuation of their effective bioactive compounds represents a challenge: there is then a great need for an efficient method to reveal the bioactive ingredients of herbal patches. In this work, a wide-screening approach is proposed to an individuation of transdermal bioactive components in herbal patches obtained by Spatholobus suberectus Dunn (S.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) play a crucial role in diagnosis and treatment, yet obtaining highly purified EVs from complex biological samples is often hindered by nanoscale contaminants. In this work, considering the charge-to-size characteristics of EVs, a circular multicavity electrophoresis (CME) with gradient pore size distribution was constructed in the gradient electric field to realize the isolation and preparation of EVs. By the gradient gel sieving effect, small cell debris, EVs, and proteins in biological samples were gradually separated.

View Article and Find Full Text PDF

H-NS is a prokaryotic histone-like protein that binds to bacterial chromosomal DNA with important regulatory roles in gene expression. Unlike histone proteins, hitherto post-translational modifications of H-NS are still largely uncharacterized, especially in bacterial pathogens. Salmonella Typhimurium is a primary enteric pathogen and its virulence is mainly dependent on specialized type III secretion systems (T3SSs), which were evolutionarily acquired via horizontal gene transfer.

View Article and Find Full Text PDF

Generally, the traditional stationary phase for liquid chromatography is the key part, but with an in situ immutable property, leading to many separation limitations. Based on the former exploration of photosensitive gas chromatography, we successfully prepared a photosensitive monolithic capillary silica column with high light transmission, taking advantage of the reversible cis-trans isomerism of azobenzene. And the cis-trans isomerism has launched an effective, reversible, and precise control on the liquid chromatographic retention behavior just by photoinduction according to the theoretical basis of a good correlation between photoinduction time, -azobenzene ratio, and chromatographic retention factor () ( > 0.

View Article and Find Full Text PDF

Various polarity chemicals exist in complex samples, such as plasma; nontargeted comprehensive analysis naturally requires multiple polar-extracted solvents; consequently, the polarity of the solvent plays a crucial role in the extraction efficiency of analytes from complex samples. In the present study, based on the diffusion behavior and nanoconfinement effect of solvents in the nanoconfined space, the polarity gradient solvent confinement liquid-phase nanoextraction (PGSC-NLPNE) protocol aimed to perform a one-step nontargeted analysis of a wide range of metabolites in plasma was established. The continuously wide range of extracted solvent polarities on carbon nanofibers/carbon fiber (CNFs/CF) membranes was achieved using a mixture of hexane, dichloromethane, methanol, and water as nanoconfined solvents.

View Article and Find Full Text PDF

Petal size, a crucial trait in the economically important ornamental rose (Rosa hybrida), is synergistically regulated by cell division and cell expansion. Cell division primarily occurs during the early development of petals. However, the molecular mechanism underlying the regulation of petal size is far from clear.

View Article and Find Full Text PDF
Article Synopsis
  • * Silencing the SlNAP1 gene resulted in delayed fruit ripening, reduced color change, lower sugar accumulation, and increased starch content in the fruits.
  • * Results showed decreased activity of starch-degrading enzymes and lower expression of genes related to both starch and sugar metabolism in SlNAP1-silenced fruits, indicating SlNAP1 may promote fruit ripening by influencing carbohydrate processes.
View Article and Find Full Text PDF

The separation and detection of microparticles within complex samples pose substantial challenges due to the intricate variations in size and concentration. A strategy employing gravity-assisted gradient size exclusion principle based on controllable gap sizes on the surface of silicon nanowire arrays (SiNWAs) has been established to achieve the separation of microparticles with diverse sizes. The formation of gradient gap sizes was accomplished by meticulously investigating the impact of oxidation-reduction reactions through metal-assisted chemical etching.

View Article and Find Full Text PDF

Petal size is determined by cell division and cell expansion. Jasmonic acid (JA) has been reported to be associated with floral development, but its regulatory mechanism affecting petal size remains unclear. Here, we reveal the vital role of JA in regulating petal size and the duration of the cell division phase via the key JA signaling component RhMYC2.

View Article and Find Full Text PDF
Article Synopsis
  • Carboxylesterases (CEs) are enzymes that are important for breaking down foreign substances and regulating fats in the body, and their abnormal levels are linked to diseases like diabetes and liver cancer.
  • A new near-infrared (NIR) fluorescent probe has been developed to detect CEs quickly and accurately, with a rapid response time and high sensitivity.
  • This probe can monitor changes in CE levels in living cells and zebrafish, and it has potential applications for imaging liver tumors and assisting in surgeries, making it valuable for medical diagnostics and research.
View Article and Find Full Text PDF

Hypochlorite (ClO) and viscosity both affect the physiological state of mitochondria, and their abnormal levels are closely related to many common diseases. Therefore, it is vitally important to develop mitochondria-targeting fluorescent probes for the dual sensing of ClO and viscosity. Herein, we have explored a new fluorescent probe, -, which responds sensitively to ClO and viscosity with off-on fluorescence changes at 558 and 765 nm, respectively.

View Article and Find Full Text PDF

Salinity hinders plant growth and development, resulting in reduced crop yields and diminished crop quality. Nitric oxide (NO) and brassinolides (BR) are plant growth regulators that coordinate a plethora of plant physiological responses. Nonetheless, the way in which these factors interact to affect salt tolerance is not well understood.

View Article and Find Full Text PDF

An approach for the controllable separation and concentration of nucleic acid using a circular nonuniform electric field was proposed and developed. Using six different lengths of DNA molecules as standard samples, the distribution of the gradient electric field was increased from the outer circular electrode to the inner rod-shaped electrode, contributing to the migration of DNA molecules at a velocity gradient towards the region with the strongest inner electric field. The DNA molecules were arranged in a distribution of concentric circles that aligned with the distribution of concentric equipotential lines.

View Article and Find Full Text PDF

Pesticides are used in agricultural production for prevent and control crop diseases and pests, but it is easy to cause excessive pesticides residues in agricultural products, polluting the environment and endangering human health. Due to their unmatched and sustainable capabilities, nanoextraction procedures are becoming every day more important in Analytical Chemistry. In particular, nanoconfined liquid phase extraction has shown extraction capabilities toward polar, medium polar, and/or nonpolar substances, which can be easily modulated depending on the nanoconfined solvent used.

View Article and Find Full Text PDF
Article Synopsis
  • The ripening of tomato fruit is controlled by specific genes and transcription factors, particularly the NAC family, which influences various plant processes, including fruit ripening.
  • Despite the presence of numerous NAC genes in tomatoes, the role of these genes, especially SlNAP1, in fruit ripening is not well understood.
  • Our research shows that SlNAP1 positively affects fruit ripening by directly activating genes that degrade gibberellins, and interacts with SlGID1, suggesting a significant role in the regulatory network of tomato fruit ripening.
View Article and Find Full Text PDF

In the field of e-commerce warehousing, maximizing the utilization of packing bins is a fundamental goal for all major logistics enterprises. However, determining the appropriate size of packing bins poses a practical challenge for many logistics companies. Given the limited research on the open-size 3D bin packing problem as well as the high complexity and lengthy computation time of existing models, this study focuses on optimizing multiple-bin sizes within the e-commerce context.

View Article and Find Full Text PDF

Introduction: Natural products, the small organic molecules produced by plants, microbes and invertebrates, often present in the form of a mixture, this leads to the structural characterisation of natural extracts often requiring time-consuming multistep purification procedures. Nuclear magnetic resonance (NMR) technology is traditionally utilised as a tool for the structural elucidation of pure compounds. Contemporarily, an up-to-date trend in the application of NMR in natural product research is shifting to the direct NMR analysis of crude mixtures, to obtain molecular structure and biological activity information without performing cumbersome separation.

View Article and Find Full Text PDF

Novel imidazolium-based mass tags (IMTs) were designed, synthesized and applied to simultaneous analysis of multiple biomarkers on less than 10 cells. The high sensitivity, flexible extensibility and excellent distinguishability of IMTs open new avenues for designing common mass tag templates suitable for mass spectrometric immunoassay and provide an ideal option for multiplex-sensitive detection at the cellular scale.

View Article and Find Full Text PDF

The root is an important organ for obtaining nutrients and absorbing water and carbohydrates, and it depends on various endogenous and external environmental stimulations such as light, temperature, water, plant hormones, and metabolic constituents. Auxin, as an essential plant hormone, can mediate rooting under different light treatments. Therefore, this review focuses on summarizing the functions and mechanisms of light-regulated auxin signaling in root development.

View Article and Find Full Text PDF

A novel ratiometric fluorescence strategy for sulfide ions (S) analysis has been developed using metal-organic framework (MOF)-based nanozyme. NH-Cu-MOF displays blue fluorescence (λem = 435 nm) originating from 2-amino-1,4-benzenedicarboxylic acid ligand. Besides, it possesses oxidase-like activity due to Cu node, which can trigger chromogenic reaction.

View Article and Find Full Text PDF
Article Synopsis
  • Artemisinin (ART) is a key drug for treating drug-resistant falciparum malaria, making its accurate measurement crucial for monitoring its effectiveness in clinical settings.
  • A new ratiometric fluorescence method has been developed, utilizing Zn-MOF for fluorescence reference and hemin as a catalyst to enhance detection of ART.
  • The method shows a broad detection range (0.15 μM to 150 μM) and a low detection limit (50 nM), successfully identifying ART in specific pharmaceutical tablets.
View Article and Find Full Text PDF

A new fluorescence strategy was described for ratiometric sensing of formaldehyde (FA) with bifunctional MOF, which acted as a fluorescence reporter as well as biomimetic peroxidase. With the assistance of HO, NH-MIL-101 (Fe) catalyzes the oxidation of non-luminescent substrate o-phenylenediamine (OPD) to produce fluorescent product (oxOPD) with the maximum emission at 570 nm. Besides, intrinsic fluorescence of MOF (λem = 445 nm) was quenched by oxOPD through inner filter effect (IFE).

View Article and Find Full Text PDF

NO enhances the resistance of tomato seedlings to salt stress through protein S-nitrosylation and transcriptional regulation, which involves the regulation of MAPK signaling and carbohydrate metabolism. Nitric oxide (NO) regulates various physiological and biochemical processes and stress responses in plants. We found that S-nitrosoglutathione (GSNO) treatment significantly promoted the growth of tomato seedling under NaCl stress, indicating that NO plays a positive role in salt stress resistance.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionfaunfas29pkr893rjtogidud105ijdla): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once