Publications by authors named "Huw M. L. Davies"

A catalyst-in-bag system facilitates the recovery and recycling of chiral dirhodium carboxylate catalysts used for enantioselective, intermolecular cyclopropanation. The catalyst-in-bag system incorporates a soluble enantioselective dirhodium complex catalyst within a reusable, commercial dialysis membrane. Dirhodium catalysts of different sizes are examined, and two catalysts with molecular weights above 2400 Da are well-retained by the membrane.

View Article and Find Full Text PDF

The mechanism of the dirhodium-catalyzed combined C-H functionalization/Cope rearrangement (CH/Cope) reaction discovered by the Davies group has been investigated with density functional theory (DFT) calculations and quasi-classical molecular dynamics (MD) simulations. Computations from the Davies group previously showed that there is a post-transition state bifurcation leading to a direct CH reaction and also to the CH/Cope product. While this work was in preparation, the Tantillo group and the Ess group independently reported quantum mechanical and molecular dynamics studies on the dirhodium-tetracarboxylate-catalyzed diazoester CH/Cope and CH insertion reactions with 1,3-cyclohexadiene and 1,4-cyclohexadiene, respectively.

View Article and Find Full Text PDF

(-)-Cylindrocyclophane A is a 22-membered C-symmetric [7.7]paracyclophane that bears bis-resorcinol functionality and six stereocenters. We report a synthetic strategy for (-)-cylindrocyclophane A that uses 10 C-H functionalization reactions, resulting in a streamlined route with high enantioselectivity and efficiency (17 steps).

View Article and Find Full Text PDF

Cereblon (CRBN) has been successfully co-opted to affect the targeted degradation of "undruggable" proteins with immunomodulatory imide drugs (IMiDs). IMiDs act as molecule glues that facilitate ternary complex formation between CRBN and a target protein, leading to ubiquitination and proteasomal degradation. Subtle structural modifications often cause profound and sometimes unpredictable changes in the degradation selectivity.

View Article and Find Full Text PDF

Dirhodium tetrakis(2,2'-binaphthylphosphate) catalysts were successfully developed for asymmetric C-H functionalization with trichloroethyl aryldiazoacetates as the carbene precursors. The 2,2'-binaphthylphosphate (BNP) ligands were modified by introduction of aryl and/or chloro functionality at the 4,4',6,6' positions. As the BNP ligands are C-symmetric, the resulting dirhodium tetrakis(2,2'-binaphthylphosphate) complexes were expected to be D-symmetric, but X-ray crystallographic and computational studies revealed this is not always the case because of internal T-shaped CH-π and aryl-aryl interactions between the ligands.

View Article and Find Full Text PDF

Chiral [2.2]paracyclophane derivatives are of considerable interest because of their potential in asymmetric catalysis and the development of chiral materials. This study describes the scope of rhodium-catalyzed reactions of aryldiazoacetates with [2.

View Article and Find Full Text PDF

Organic diazo compounds are versatile reagents in chemical synthesis and would benefit from improved synthetic accessibility, especially for larger scale applications. Here, we report a mild method for the synthesis of diazo compounds from hydrazones using a heterogeneous Fe-N-C catalyst, which has Fe ions dispersed within a graphitic nitrogen-doped carbon support. The reactions proceed readily at room temperature using O (1 atm) as the oxidant.

View Article and Find Full Text PDF

A novel donor/acceptor carbene intermediate has been developed using diaryldiazoketones as carbene precursors. In the presence of the chiral dirhodium catalyst, Rh(-TPPTTL), diaryldiazoketones undergo highly regio-, stereo-, and diastereoselective C-H functionalization of activated and unactivated secondary and tertiary C-H bonds. Computational studies revealed that the arylketo group behaves differently than the carboxylate acceptor group because the orientation of the arylketo group predetermines which face of the carbene will be attacked.

View Article and Find Full Text PDF

Immunomodulatory imide drugs form the core of many pharmaceutically relevant structures, but C-C bond formation via metal-catalyzed cross coupling is difficult due to the sensitivity of the glutarimide ring ubiquitous in these structures. We report that replacement of the traditional alkali base with a fluoride source enhances a previously challenging Suzuki-Miyaura coupling on glutarimide-containing compounds with trifluoroborates. These enabling conditions are reactive enough to generate these derivatives in high yields but mild enough to preserve both the glutarimide and its sensitive stereocenter.

View Article and Find Full Text PDF

Catalyst-controlled C-H functionalization using donor/acceptor carbenes has been shown to be an efficient process capable of high levels of site control and stereocontrol. This study demonstrated that the scope of the donor/acceptor carbene C-H functionalization can be extended to systems where the acceptor group is a phosphonate. When using the optimized dirhodium catalyst, Rh(-(4-Br)TPPTTL), ((aryl)(diazo)methyl)phosphonates undergo highly enantioselective (84-99% ee) and site-selective (>30:1 r.

View Article and Find Full Text PDF

Although cyclopropanation with donor/acceptor carbenes can be conducted under low catalyst loadings (<0.001 mol %), such low loading has not been generally effective for other classes of carbenes such as acceptor carbenes. In this current study, we demonstrate that ethyl diazoacetate can be effectively used in the cyclopropanation of -Boc-2,5-dihydropyrrole with dirhodium(II) catalyst loadings of 0.

View Article and Find Full Text PDF

Cystic fibrosis (CF) is an autosomal genetic disorder caused by disrupted anion transport in epithelial cells lining tissues in the human airways and digestive system. While cystic fibrosis transmembrane conductance regulator (CFTR) modulator compounds have provided transformative improvement in CF respiratory function, certain patients exhibit marginal clinical benefit or detrimental effects or have a form of the disease not approved or unlikely to respond using CFTR modulation. We tested hit compounds from a 300,000-drug screen for their ability to augment CFTR transepithelial transport alone or in combination with the FDA-approved CFTR potentiator ivacaftor (VX-770).

View Article and Find Full Text PDF

A series of chiral bowl-shaped diruthenium(II,III) tetracarboxylate catalysts were prepared and evaluated in asymmetric cyclopropanations with donor/acceptor carbenes derived from aryldiazoacetates. The diruthenium catalysts self-assembled to generate -symmetric bowl-shaped structures in an analogous manner to their dirhodium counterparts. The optimum catalyst was found to be Ru(-TPPTTL)·BAr [-TPPTTL = ()-2-(1,3-dioxo-4,5,6,7-tetraphenylisoindolin-2-yl)-3,3-dimethylbutanoate, BAr = tetrakis(3,5-bis(trifluoromethyl)phenyl)borate], which resulted in the cyclopropanation of a range of substrates in up to 94% ee.

View Article and Find Full Text PDF

Rapid access to 2,2-difluorobicylco[1.1.1]pentanes is enabled from an α-allyldiazoacetate precursor in a one-pot process through cyclopropanation to afford a 3-aryl bicyclo[1.

View Article and Find Full Text PDF

The synthesis and evaluation of six C-symmetric bowl-shaped dirhodium tetracarboxylate catalysts are described. These elaborate high symmetry catalysts are readily generated by means of the self-assembly of four C-symmetric ligands around the dirhodium core. These catalysts are capable of highly site-selective, diastereoselective and enantioselective C-H functionalization reactions by means of donor/acceptor carbene-induced C-H insertions.

View Article and Find Full Text PDF

Detailed kinetic studies on the functionalization of unactivated hydrocarbon sp C-H bonds by dirhodium-catalyzed reaction of aryldiazoacetates revealed that the C-H functionalization step is rate-determining. The efficiency of this step was increased by using the hydrocarbon as solvent and using donor/acceptor carbenes with an electron-withdrawing substituent on the aryl donor group. The optimum catalyst for these reactions is the tetraphenylphthalimido derivative Rh2(-TPPTTL) and a further beneficial refinement was obtained by using -dicyclohexylcarbodiimide as an additive.

View Article and Find Full Text PDF

The rhodium-catalyzed enantioselective C-H functionalization of unactivated C-H bonds by means of donor/acceptor carbene-induced C-H insertion was extended to substrates containing nitrogen functionality. The rhodium-stabilized donor/acceptor carbenes were generated by rhodium-catalyzed decomposition of aryldiazoacetates. The phthalimido group was the optimum nitrogen protecting group.

View Article and Find Full Text PDF

Rhodium-catalyzed C-H functionalization of cyclohexadiene derivatives with diaryldiazomethanes followed by oxidation with DDQ provides ready access to triarylmethanes. Two chiral dirhodium tetracarboxylates, Rh(-PTAD) and Rh(-TPPTTL), were found to be the optimum chiral catalysts for these transformations. This method showcases the ability of diaryldiazomethanes to perform intermolecular C-H insertion with high enantioselectivity and good yields.

View Article and Find Full Text PDF

A stereoselective, solvent- and metal-free endocyclic C-C bond cleavage of monocyclopropanated cyclopentadienes mediated by strong acids was developed, leading to highly functionalized six-membered carbocycles with high stereocontrol. The critical step for this ring-expansion is the formation of a cyclopropyl carbocation that undergoes endocyclic ring opening via an SN'-type attack of various nucleophiles. Subsequent synthetic transformations show the versatility of the resulting cyclohexenes for the synthesis of new compounds with nonconventional substitution patterns.

View Article and Find Full Text PDF

Hole-transport materials (HTMs) based on triarylamine derivatives play important roles in organic electronics applications including organic light-emitting diodes and perovskite solar cells. For some applications, triarylamine derivatives bearing appropriate binding groups have been used to functionalize surfaces, while others have been incorporated as side chains into polymers to manipulate the processibility of HTMs for device applications. However, only a few approaches have been used to incorporate a single surface-binding group or polymerizable group into triarylamine materials.

View Article and Find Full Text PDF

Rhodium(II) catalyst-controlled site- and stereoselective carbene insertion into the distal allylic C(sp)-H bond of allyl boronates is reported. The optimum chiral catalyst for this reaction is Rh(-TPPTTL). The fidelity and asymmetric induction of this catalytic transformation allows for a highly diastereoselective and enantioselective C-C bond formation without interference from the allyl boronate functionality.

View Article and Find Full Text PDF

The rhodium(II)-catalyzed reaction of a model alkenyl donor/acceptor -sulfonyltriazole with a wide selection of furans is reported. This investigation unearthed a range of structurally diverse carbocyclic and ring-opened products, in good to excellent yields. The products obtained are proposed to arise selectively via cyclopropanation or zwitterionic rearrangement pathways, which are highly dependent on both the structural and electronic features of the furan substrate.

View Article and Find Full Text PDF