Publications by authors named "Huub M M Ten Eikelder"

Recent years have witnessed increasing attention on supramolecular polymerization, i.e., the formation of one-dimensional aggregates in which the monomeric units bind together via reversible and usually highly directional non-covalent interactions.

View Article and Find Full Text PDF

In the field of supramolecular (co)polymerizations, the ability to predict and control the composition and length of the supramolecular (co)polymers is a topic of great interest. In this work, we elucidate the mechanism that controls the polymer length in a two-component cooperative supramolecular polymerization and unveil the role of the second component in the system. We focus on the supramolecular copolymerization between two derivatives of benzene-1,3,5-tricarboxamide (BTA) monomers: and .

View Article and Find Full Text PDF

Elucidating the microstructure of supramolecular copolymers remains challenging, despite the progress in the field of supramolecular polymers. In this work, we present a detailed approach to investigate supramolecular copolymerizations under thermodynamic control. Our approach provides insight into the interactions of different types of monomers and hereby allows elucidating the microstructure of copolymers.

View Article and Find Full Text PDF

The coassembly of different building blocks into supramolecular copolymers provides a promising avenue to control their properties and to thereby expand the potential of supramolecular polymers in applications. However, contrary to covalent copolymerization which nowadays can be well controlled, the control over sequence, polymer length, and morphology in supramolecular copolymers is to date less developed, and their structures are more determined by the delicate balance in binding free energies between the distinct building blocks than by kinetics. Consequently, to rationalize the structures of supramolecular copolymers, a thorough understanding of their thermodynamic behavior is needed.

View Article and Find Full Text PDF

Supramolecular block copolymers are becoming attractive materials in nascent optoelectronic and catalytic technologies. However, their dynamic nature precludes the straightforward tuning and analysis of the polymer's structure. Here we report the elucidation on the microstructure of triarylamine triamide-based supramolecular block copolymers through a comprehensive battery of spectroscopic, theoretical, and super-resolution microscopic techniques.

View Article and Find Full Text PDF

Supramolecular copolymers, non-covalent analogues of synthetic copolymers, constitute a new and promising class of polymers. In contrast to their covalent counterparts, the details of their mechanism of formation, as well as the factors determining their composition and length, are still poorly understood. Here, the supramolecular copolymerization between two slightly structurally different benzene-1,3,5-tricarboxamide (BTA) monomers functionalized with either oligodimethylsiloxane (oDMSi) or alkyl side chains is unraveled by combining experimental and theoretical approaches.

View Article and Find Full Text PDF

The self-assembly of molecular building blocks into one-dimensional supramolecular architectures has opened up new frontiers in materials science. Due to the noncovalent interactions between the monomeric units, these architectures are intrinsically dynamic, and understanding their kinetic driving forces is key to rationally programming their morphology and function. To understand the self-assembly dynamics of supramolecular polymerizations (SP), kinetic models based on aggregate growth by sequential monomer association and dissociation have been analyzed.

View Article and Find Full Text PDF

It is not understood why, after onset of left bundle-branch block (LBBB), acute worsening of cardiac function is followed by a further gradual deterioration of function, whereas most adverse cardiac events lead to compensatory adaptations. We investigated whether mechano-electrical coupling (MEC) can explain long-term remodeling with LBBB and cardiac resynchronization therapy (CRT). To this purpose, we used an integrative modeling approach relating local ventricular electrophysiology, calcium handling, and excitation-contraction coupling to global cardiovascular mechanics and hemodynamics.

View Article and Find Full Text PDF

A detailed analysis of the conformational states of self-assembled, stereoselectively deuterated benzene-1,3,5-tricarboxamides ((S,S,S)-D-BTAs) reveals four different conformers for the supramolecular polymers. The relative amount of the conformers depends on the solvent structure and the temperature. With the help of a model, the thermodynamic parameters that characterize the different conformational states were quantified as well as the amount of the species that occur at different stages of the polymerization process.

View Article and Find Full Text PDF

Getting rid of the tubes: An assessment of the retention of functionalized multi-walled carbon nanotubes (MWNTs) in the organs of mice was carried out using single photon emission computed tomography and quantitative scintigraphy (see scheme). Increasing the degree of functionalization on MWNTs enhanced renal clearance, while lower functionalization promoted reticuloendethelial system accumulation.

View Article and Find Full Text PDF

Saluting the sergeant: Phg-BTA (see scheme) cooperatively self-assembles into helical aggregates and shows unprecedented racemization behavior in the presence of base. In thermodynamically controlled conditions, the addition of a small amount of chiral auxiliary to this mixture results in a deracemization reaction and a final enantiomeric excess of 32 %. A theoretical model is presented to understand in detail the results obtained.

View Article and Find Full Text PDF

We describe a model that rationalizes amplification of chirality in cooperative supramolecular copolymerization. The model extends nucleation-elongation based equilibrium models for growth of supramolecular homopolymers to the case of two monomer and aggregate types. Using the principle of mass-balance for the two monomer types, we derive a set of two nonlinear equations, describing the thermodynamic equilibrium state of the system.

View Article and Find Full Text PDF

The understanding of multi-component mixtures of self-assembling molecules under thermodynamic equilibrium can only be advanced by a combined experimental and theoretical approach. In such systems, small differences in association energy between the various components can be significantly amplified at the supramolecular level via intricate nonlinear effects. Here we report a theoretical investigation of two-component, self-assembling systems in order to rationalize chiral amplification in cooperative supramolecular copolymerizations.

View Article and Find Full Text PDF

In the vertebrate retina, horizontal cells generate the inhibitory surround of bipolar cells, an essential step in contrast enhancement. For the last decades, the mechanism involved in this inhibitory synaptic pathway has been a major controversy in retinal research. One hypothesis suggests that connexin hemichannels mediate this negative feedback signal; another suggests that feedback is mediated by protons.

View Article and Find Full Text PDF

Background: Acute atrial dilation increases the susceptibility to atrial fibrillation (AF). However, the mechanisms by which atrial stretch may contribute to the initiation and perpetuation of AF remain to be determined.

Objective: The purpose of this study was to use a novel multiscale model of atrial electromechanics and mechanoelectrical feedback to test the hypothesis that acute stretch increases vulnerability to AF by heterogeneous activation of stretch-activated channels.

View Article and Find Full Text PDF

Regional variation in ionic membrane currents causes differences in action potential duration (APD) and is proarrhythmic. After several weeks of ventricular pacing, AP morphology and duration are changed due to electrical remodeling of the transient outward potassium current (I (to)) and the L-type calcium current (I (Ca,L)). It is not clear what mechanism drives electrical remodeling.

View Article and Find Full Text PDF

Atrial fibrillation, a common cardiac arrhythmia, is promoted by atrial dilatation. Acute atrial dilatation may play a role in atrial arrhythmogenesis through mechanoelectric feedback. In experimental studies, conduction slowing and block have been observed in acutely dilated atria.

View Article and Find Full Text PDF

Atrial fibrillation is the most common cardiac arrhythmia. Structural cardiac defects such as fibrosis and gap junction remodeling lead to a reduced cellular electrical coupling and are known to promote atrial fibrillation. It has been observed that the expression of the hyperpolarization-activated current If is increased under pathological conditions.

View Article and Find Full Text PDF