The backbone of all colorectal cancer classifications including the consensus molecular subtypes (CMS) highlights microsatellite instability (MSI) as a key molecular pathway. Although mucinous histology (generally defined as >50% extracellular mucin-to-tumor area) is a "typical" feature of MSI, it is not limited to this subgroup. Here, we investigate the association of CMS classification and mucin-to-tumor area quantified using a deep learning algorithm, and the expression of specific mucins in predicting CMS groups and clinical outcome.
View Article and Find Full Text PDFIn retinoblastoma, accurate segmentation of ocular structure and tumor tissue is important when working towards personalized treatment. This retrospective study serves to evaluate the performance of multi-view convolutional neural networks (MV-CNNs) for automated eye and tumor segmentation on MRI in retinoblastoma patients. Forty retinoblastoma and 20 healthy-eyes from 30 patients were included in a train/test (N = 29 retinoblastoma-, 17 healthy-eyes) and independent validation (N = 11 retinoblastoma-, 3 healthy-eyes) set.
View Article and Find Full Text PDFTissue microarray (TMA) core images are a treasure trove for artificial intelligence applications. However, a common problem of TMAs is multiple sectioning, which can change the content of the intended tissue core and requires re-labelling. Here, we investigate different ensemble methods for colorectal tissue classification using high-throughput TMAs.
View Article and Find Full Text PDFPurpose: We present a 3-dimensional patient-specific eye model from magnetic resonance imaging (MRI) for proton therapy treatment planning of uveal melanoma (UM). During MRI acquisition of UM patients, the point fixation can be difficult and, together with physiological blinking, can introduce motion artifacts in the images, thus challenging the model creation. Furthermore, the unclear boundary of the small objects (eg, lens, optic nerve) near the muscle or of the tumors with hemorrhage and tantalum clips can limit model accuracy.
View Article and Find Full Text PDFIEEE Trans Biomed Eng
August 2015
Goal: In this paper, we address the development of an automatic approach for the computation of pose information (position + orientation) of prostate brachytherapy loose seeds from 3-D CT images.
Methods: From an initial detection of a set of seed candidates in CT images using a threshold and connected component method, the orientation of each individual seed is estimated by using the principal components analysis method. The main originality of this approach is the ability to classify the detected objects based on a priori intensity and volume information and to separate groups of closely spaced seeds using three competing clustering methods: the standard and a modified k-means method and a Gaussian mixture model with an expectation-maximization algorithm.