Publications by authors named "Huu Van Tra"

4,4'-methylene diphenyl diisocyanate (MDI) aerosol exposure evaluation in spray foam insulation application is known to be a challenge. Current available techniques are either not user-friendly or are inaccurate or are not validated for this application. A new sampler has recently been developed to address the user-friendliness issues with other samplers: the ASSET EZ4-NCO, but the use of this sampler in spray foam insulation applications has not been demonstrated or validated.

View Article and Find Full Text PDF

Beryllium (Be) is still not well understood from a toxicological point of view, and studies that involve the determination of different Be compounds species in tissues need to be conducted. In this paper we describe the development and validation of reliable methods for the detection of ultra-trace levels of Be in various biological matrices. Blood and tissues (liver, lung, spleen, and kidney) were used in this study.

View Article and Find Full Text PDF

In this project, a sampling device and an analytical method have been developed to simultaneously analyse the most frequently found low molecular weight amines, including aliphatic, aromatic and alcohol amines. These amines are diethanolamine, ethanolamine, methylamine, isopropylamine, morpholine, dimethylamine, and aniline. A sampling device was developed using a 37 mm cassette with glass fibre filters impregnated with sulfuric acid.

View Article and Find Full Text PDF

In the present study, we used microwave energy instead of conventional heating to transform poly-3-hydroxybutyrate (PHB) into methyl 3-hydroxybutyrate (Me-3HB) in acidified methanol (H2SO4, 10%, v/v) mixture in less than 4 min at 10% microwave power. The microwave assisted method was then applied to analyze PHB produced by Alcaligenes latus. The PHB content in the biomass determined using microwave heating was comparable to the amount found by conventional heating.

View Article and Find Full Text PDF

Biopolymers such as poly(hydroxyalkanoates) (PHAs) have received much attention due to their physico-chemical properties, biodegradability, and biocompatibility that make them good candidates for industrial and medical applications. Produced by some microorganisms PHAs accumulate within the cells of these organisms. The optimization of microbial processes to produce PHAs at a lower cost requires rapid and accurate techniques for quantification of the biopolymer in biomass.

View Article and Find Full Text PDF

Occupational exposures to isocyanates can lead to occupational asthma. Once sensitized, some workers could react to isocyanate monomers at concentrations below 1% of the Permissible Exposure Limit of 5 ppb in air. Currently available methods are not sufficiently sensitive to adequately evaluate isocyanates present at these levels in workplace air.

View Article and Find Full Text PDF

Isocyanates can cause occupational asthma. By using available HPLC-UVF methods, isocyanates can be quantified only at levels above 1% of the Permissible Exposure Limits (PEL). Once sensitized, workers can react to concentrations below these limits of detection (LOD) making these methods insufficiently sensitive to adequately evaluate trace amounts of isocyanates present in air or in materials at safe levels for sensitized workers.

View Article and Find Full Text PDF

The stabilization of the isocyanate (NCO) groups during workplace sampling is necessary for their subsequent laboratory analysis. Most derivatization reagents are secondary amines. By carrying out a test in which two secondary amines are added to an isocyanate, the relative rates of these reactions can be evaluated.

View Article and Find Full Text PDF

Recent studies in our laboratories have focused on the reliability of direct-reading instruments for the determination of airborne isocyanate concentrations. The evaluation of airborne isocyanates is complicated because these substances exist as diisocyanate monomers and polyisocyanate oligomers, both in the vapor and aerosol phases. The studies showed that a number of direct-reading instruments, including the SureSpot test kit, do not allow an accurate determination of isocyanates in the aerosol phase.

View Article and Find Full Text PDF