Publications by authors named "Hut R"

Article Synopsis
  • Light plays a crucial role in regulating the physiology and behavior of mammals, and improper light exposure can lead to health issues due to disrupted circadian rhythms.
  • The study introduces a new method for measuring light using a photoreceptor-specific (α-opic) approach that accounts for variations across different mammalian species and their unique photoreceptor types.
  • Results show that α-opic measurements provide better predictions of physiological responses to light than the traditional lux measurements, potentially enhancing animal welfare, scientific research, agriculture, and energy efficiency.
View Article and Find Full Text PDF

Although many physical activity (PA) interventions for older adults have proven effective in controlled research settings, optimal implementation in real life remains challenging. This study identifies determinants perceived by stakeholders when implementing community-based PA interventions for older adults. We interviewed 31 stakeholders guided by the Consolidated Framework for Implementation Research (CFIR).

View Article and Find Full Text PDF

Insufficient energy intake to meet energy expenditure demands of physical activity can result in systemic neuroendocrine and metabolic abnormalities in activity-dependent anorexia and relative energy deficiency in sport (REDs). REDs affects >40% of athletes, yet the lack of underlying molecular changes has been a hurdle to have a better understanding of REDs and its treatment. To assess the molecular changes in response to energy deficiency, we implemented the "exercise-for-food" paradigm, in which food reward size is determined by wheel-running activity.

View Article and Find Full Text PDF

Many middle-aged and older adults (MAOAs) do not engage in sufficient physical activity (PA), despite its well-documented benefits for healthy aging. Existing PA interventions often fail to reach or engage the target population effectively. This study investigates MAOAs' preferences for recruitment strategies to optimize the reach and uptake of PA interventions, thereby enhancing their impact on healthy aging and public health.

View Article and Find Full Text PDF

Plasticity in daily timing of activity has been observed in many species, yet the underlying mechanisms driving nocturnality and diurnality are unknown. By regulating how much wheel-running activity will be rewarded with a food pellet, we can manipulate energy balance and switch mice to be nocturnal or diurnal. Here, we present the rhythmic transcriptome of 21 tissues, including 17 brain regions, sampled every 4 h over a 24-h period from nocturnal and diurnal male CBA/CaJ mice.

View Article and Find Full Text PDF

Light enables vision and exerts widespread effects on physiology and behavior, including regulating circadian rhythms, sleep, hormone synthesis, affective state, and cognitive processes. Appropriate lighting in animal facilities may support welfare and ensure that animals enter experiments in an appropriate physiological and behavioral state. Furthermore, proper consideration of light during experimentation is important both when it is explicitly employed as an independent variable and as a general feature of the environment.

View Article and Find Full Text PDF

Repeated or chronic stress can change the phase of peripheral circadian rhythms. Melatonin (Mel) is thought to be a circadian clock-controlled signal that might play a role in synchronizing peripheral rhythms, in addition to its direct suppressing effects on the stress axis. In this study we test whether Mel can reduce the social-defeat stress-induced phase shifts in peripheral rhythms, either by modulating circadian phase or by modulating the stress axis.

View Article and Find Full Text PDF

The circadian clock times physiological and behavioural processes and resets on a daily basis to synchronize with the environment. The involvement of the circadian clock in photoperiodic time measurement synchronising annual rhythms is still under debate and different models have been proposed explaining their integration. Insects overcome unfavourable conditions in diapause, a form of dormancy.

View Article and Find Full Text PDF

Circadian entrainment to the environmental day-night cycle is essential for the optimal use of environmental resources. In insects, opsin-based photoreception in the compound eye and ocelli and CRYPTOCHROME1 (CRY1) in circadian clock neurons are thought to be involved in sensing photic information, but the genetic regulation of circadian light entrainment in species without light-sensitive CRY1 remains unclear. To elucidate a possible CRY1-independent light transduction cascade, we analyzed light-induced gene expression through RNA-sequencing in .

View Article and Find Full Text PDF

Light is the most important environmental cue for the circadian system of most organisms to stay synchronized to daily environmental changes. Like many other insects, the wasp Nasonia vitripennis has trichromatic compound eye-based colour vision and is sensitive to the light spectrum ranging from UV to green. We recently described a red-sensitive, ocelli-based photoreceptor, but its contribution to circadian entrainment remains unclear.

View Article and Find Full Text PDF

Seasonal mammals register photoperiodic changes through the photoneuroendocrine system enabling them to time seasonal changes in growth, metabolism, and reproduction. To a varying extent, proximate environmental factors like ambient temperature (T) modulate timing of seasonal changes in physiology, conferring adaptive flexibility. While the molecular photoneuroendocrine pathway governing the seasonal responses is well defined, the mechanistic integration of nonphotoperiodic modulatory cues is poorly understood.

View Article and Find Full Text PDF

Circadian rhythms influence physiology, metabolism, and molecular processes in the human body. Estimation of individual body time (circadian phase) is therefore highly relevant for individual optimization of behavior (sleep, meals, sports), diagnostic sampling, medical treatment, and for treatment of circadian rhythm disorders. Here, we provide a partial least squares regression (PLSR) machine learning approach that uses plasma-derived metabolomics data in one or more samples to estimate dim light melatonin onset (DLMO) as a proxy for circadian phase of the human body.

View Article and Find Full Text PDF

AbstractDuring multiday torpor, deep-hibernating mammals maintain a hypometabolic state where heart rate and ventilation are reduced to 2%-4% of euthermic rates. It is hypothesized that this ischemia-like condition may cause DNA damage through reactive oxygen species production. The reason for intermittent rewarming (arousal) during hibernation might be to repair the accumulated DNA damage.

View Article and Find Full Text PDF

The vertebrate photoperiodic neuroendocrine system uses the photoperiod as a proxy to time the annual rhythms in reproduction. The thyrotropin receptor (TSHR) is a key protein in the mammalian seasonal reproduction pathway. Its abundance and function can tune sensitivity to the photoperiod.

View Article and Find Full Text PDF

While stress does not affect the phase or period of the central pacemaker in the suprachiasmatic nucleus, it can shift clocks in peripheral tissues. Our previous studies showed significant delays of the PER2 rhythms in lung and kidney following social defeat stress. The mechanism underlying these effects is not fully understood, but might involve glucocorticoids (GC) released during the stressor.

View Article and Find Full Text PDF

Circadian light entrainment in some insects is regulated by blue-light-sensitive cryptochrome (CRY) protein that is expressed in the clock neurons, but this is not the case in hymenopterans. The hymenopteran clock does contain CRY, but it appears to be light-insensitive. Therefore, we investigated the role of retinal photoreceptors in the photic entrainment of the jewel wasp .

View Article and Find Full Text PDF

Modern urban human activities are largely restricted to the indoors, deprived of direct sunlight containing visible and near-infrared (NIR) wavelengths at high irradiance levels. Therapeutic exposure to doses of red and NIR, known as photobiomodulation (PBM), has been effective for a broad range of conditions. In a double-blind, randomized, placebo-controlled study, we aimed to assess the effects of a PBM home set-up on various aspects of well-being, health, sleep, and circadian rhythms in healthy human subjects with mild sleep complaints.

View Article and Find Full Text PDF

Climate change will strongly affect the developmental timing of insects, as their development rate depends largely on ambient temperature. However, we know little about the genetic mechanisms underlying the temperature sensitivity of embryonic development in insects. We investigated embryonic development rate in the winter moth (Operophtera brumata), a species with egg dormancy which has been under selection due to climate change.

View Article and Find Full Text PDF

Under real-life conditions, increased light exposure during wakefulness seems associated with improved sleep quality, quantified as reduced time awake during bed time, increased time spent in non-rapid eye movement (NREM) sleep, or increased power of the electroencephalogram delta band (0.5-4 Hz). The causality of these important relationships and their dependency on circadian phase and/or time awake has not been studied in depth.

View Article and Find Full Text PDF

Human thermoregulation is strictly regulated by the preoptic area of the hypothalamus, which is directly influenced by the suprachiasmatic nucleus (SCN). The main input pathway of the SCN is light. Here, thermoregulatory effects of light were assessed in humans in a forced desynchrony (FD) design.

View Article and Find Full Text PDF

Light-induced improvements in alertness are more prominent during nighttime than during the day, suggesting that alerting effects of light may depend on internal clock time or wake duration. Relative contributions of both factors can be quantified using a forced desynchrony (FD) designs. FD designs have only been conducted under dim light conditions (<10 lux) since light above this amount can induce non-uniform phase progression of the circadian pacemaker (also called relative coordination).

View Article and Find Full Text PDF

Many mammalian species use photoperiod as a predictive cue to time seasonal reproduction. In addition, metabolic effects on the reproductive axis may also influence seasonal timing, especially in female small, short-lived mammals. To get a better understanding of how annual cycling environmental cues impact reproductive function and plasticity in small, short-lived herbivores with different geographic origins, we investigated the mechanisms underlying integration of temperature in the photoperiodic-axis regulating female reproduction in a Northern vole species (tundra vole, Microtus oeconomus) and in a Southern vole species (common vole, Microtus arvalis).

View Article and Find Full Text PDF

Uncontrollable stress is linked to the development of many diseases, some of which are associated with disrupted daily rhythms in physiology and behavior. While available data indicate that the master circadian pacemaker in the suprachiasmatic nucleus (SCN) is unaffected by stress, accumulating evidence suggest that circadian oscillators in peripheral tissues and organs can be shifted by a variety of stressors and stress hormones. In the present study, we examined effects of acute and chronic social defeat stress in mice and addressed the question of whether effects of uncontrollable stress on peripheral clocks are tissue specific and depend on time of day of stress exposure.

View Article and Find Full Text PDF

Seasonal timing of reproduction in voles is driven by photoperiod. We hypothesized that a negative energy balance can modify spring-programmed photoperiodic responses in the hypothalamus, controlling reproductive organ development. We manipulated energy balance by the 'work-for-food' protocol, in which voles were exposed to increasing levels of food scarcity at different ambient temperatures under long photoperiod.

View Article and Find Full Text PDF