Distance distribution information obtained by pulsed dipolar EPR spectroscopy provides an important contribution to many studies in structural biology. Increasingly, such information is used in integrative structural modeling, where it delivers unique restraints on the width of conformational ensembles. In order to ensure reliability of the structural models and of biological conclusions, we herein define quality standards for sample preparation and characterization, for measurements of distributed dipole-dipole couplings between paramagnetic labels, for conversion of the primary time-domain data into distance distributions, for interpreting these distributions, and for reporting results.
View Article and Find Full Text PDFThe potential of spin labeling to reveal the dynamic dimension of macromolecules has been recognized since the dawn of the methodology in the 1960s. However, it was the development of pulsed electron paramagnetic resonance spectroscopy to detect dipolar coupling between spin labels and the availability of turnkey instrumentation in the 21st century that realized the full promise of spin labeling. Double electron-electron resonance (DEER) spectroscopy has seen widespread applications to channels, transporters, and receptors.
View Article and Find Full Text PDFThe continuous wave (CW) and pulse electron paramagnetic resonance (EPR) methods enable the measurement of distances between spin-labeled residues in biopolymers including proteins, providing structural information. Here we describe the CW EPR deconvolution/convolution method and the four-pulse double electron-electron resonance (DEER) approach for distance determination, which were applied to elucidate the organization of the BAK apoptotic pores formed in the lipid bilayers.
View Article and Find Full Text PDFGiven its ability to measure multicomponent distance distributions between electron-spin probes, double electron-electron resonance (DEER) spectroscopy has become a leading technique to assess the structural dynamics of biomolecules. However, methodologies to evaluate the statistical error of these distributions are not standard, often hampering a rigorous interpretation of the experimental results. Distance distributions are often determined from the experimental DEER data through a mathematical method known as Tikhonov regularization, but this approach makes rigorous error estimates difficult.
View Article and Find Full Text PDFCurrent distance measurements between spin-labels on multimeric protonated proteins using double electron-electron resonance (DEER) EPR spectroscopy are generally limited to the 15-60 Å range. Here we show how DEER experiments can be extended to dipolar evolution times of ca. 80 μs, permitting distances up to 170 Å to be accessed in multimeric proteins.
View Article and Find Full Text PDFIn mitochondrial apoptosis, Bak is activated by death signals to form pores of unknown structure on the mitochondrial outer membrane via homooligomerization. Cytochrome c and other apoptotic factors are released from the intermembrane space through these pores, initiating downstream apoptosis events. Using chemical crosslinking and double electron electron resonance (DEER)-derived distance measurements between specific structural elements in Bak, here we clarify how the Bak pore is assembled.
View Article and Find Full Text PDFDouble electron-electron resonance (DEER) is now widely utilized to measure distance distributions in the 20-70Å range. DEER is frequently applied to biological systems that have multiple conformational states leading to complex distance distributions. These complex distributions raise issues regarding the best approach to analyze DEER data.
View Article and Find Full Text PDFAn EPR membrane alignment technique was applied to measure distance and relative orientations between two spin labels on a protein oriented along the surface of the membrane. Previously we demonstrated an EPR membrane alignment technique for measuring distances and relative orientations between two spin labels using a dual TOAC-labeled integral transmembrane peptide (M2δ segment of Acetylcholine receptor) as a test system. In this study we further utilized this technique and successfully measured the distance and relative orientations between two spin labels on a membrane peripheral peptide (antimicrobial peptide magainin-2).
View Article and Find Full Text PDFWe report here specialized functions incorporated recently in the rigid-body docking software toolkit TagDock to utilize electron paramagnetic resonance derived (EPR-derived) interresidue distance measurements and spin-label accessibility data. The TagDock package extensions include a custom methanethiosulfonate spin label rotamer library to enable explicit, all-atom spin-label side-chain modeling and scripts to evaluate spin-label surface accessibility. These software enhancements enable us to better utilize the biophysical data routinely available from various spin-labeling experiments.
View Article and Find Full Text PDFThe multidomain pro-apoptotic Bcl-2 family proteins BAK and BAX are believed to form large oligomeric pores in the mitochondrial outer membrane during apoptosis. Formation of these pores results in the release of apoptotic factors including cytochrome c from the intermembrane space into the cytoplasm, where they initiate the cascade of events that lead to cell death. Using the site-directed spin labeling method of electron paramagnetic resonance (EPR) spectroscopy, we have determined the conformational changes that occur in BAK when the protein targets to the membrane and forms pores.
View Article and Find Full Text PDFThe 99-residue transmembrane C-terminal domain (C99, also known as β-CTF) of the amyloid precursor protein (APP) is the product of the β-secretase cleavage of the full-length APP and is the substrate for γ-secretase cleavage. The latter cleavage releases the amyloid-β polypeptides that are closely associated with Alzheimer's disease. C99 is thought to form homodimers; however, the free energy in favor of dimerization has not previously been quantitated.
View Article and Find Full Text PDFThe cardiac Na(+)/Ca(2+) exchanger (NCX1.1) serves as the primary means of Ca(2+) extrusion across the plasma membrane of cardiomyocytes after the rise in intracellular Ca(2+) during contraction. The exchanger is regulated by binding of Ca(2+) to its intracellular domain, which contains two structurally homologous Ca(2+) binding domains denoted as CBD1 and CBD2.
View Article and Find Full Text PDFSite-directed spin-labeling electron paramagnetic resonance (SDSL EPR) provides insight into the local structure and motion of a spin probe strategically attached to a molecule. When a second spin is introduced to the system, macromolecular information can be obtained through measurement of inter-spin distances either by continuous wave (CW) or pulsed electron double resonance (ELDOR) techniques. If both methodologies are considered, inter-spin distances of 8-80 Å can be experimentally determined.
View Article and Find Full Text PDFC99 is the transmembrane carboxyl-terminal domain of the amyloid precursor protein that is cleaved by γ-secretase to release the amyloid-β polypeptides, which are associated with Alzheimer's disease. Nuclear magnetic resonance and electron paramagnetic resonance spectroscopy show that the extracellular amino terminus of C99 includes a surface-embedded "N-helix" followed by a short "N-loop" connecting to the transmembrane domain (TMD). The TMD is a flexibly curved α helix, making it well suited for processive cleavage by γ-secretase.
View Article and Find Full Text PDFDouble Electron-Electron Resonance (DEER) has emerged as a powerful technique for measuring long range distances and distance distributions between paramagnetic centers in biomolecules. This information can then be used to characterize functionally relevant structural and dynamic properties of biological molecules and their macromolecular assemblies. Approaches have been developed for analyzing experimental data from standard four-pulse DEER experiments to extract distance distributions.
View Article and Find Full Text PDFA membrane alignment technique has been used to measure the distance between two TOAC nitroxide spin labels on the membrane-spanning M2δ, peptide of the nicotinic acetylcholine receptor (AChR), via CW-EPR spectroscopy. The TOAC-labeled M2δ peptides were mechanically aligned using DMPC lipids on a planar quartz support, and CW-EPR spectra were recorded at specific orientations. Global analysis in combination with rigorous spectral simulation was used to simultaneously analyze data from two different sample orientations for both single- and double-labeled peptides.
View Article and Find Full Text PDFThe adaptor protein ankyrin-R interacts via its membrane binding domain with the cytoplasmic domain of the anion exchange protein (AE1) and via its spectrin binding domain with the spectrin-based membrane skeleton in human erythrocytes. This set of interactions provides a bridge between the lipid bilayer and the membrane skeleton, thereby stabilizing the membrane. Crystal structures for the dimeric cytoplasmic domain of AE1 (cdb3) and for a 12-ankyrin repeat segment (repeats 13-24) from the membrane binding domain of ankyrin-R (AnkD34) have been reported.
View Article and Find Full Text PDFConformational flexibility in nucleic acids provides a basis for complex structures, binding, and signaling. One-base bulges directly neighboring single-base mismatches in nucleic acids can be present in a minimum of two distinct conformations, complicating the examination of the thermodynamics by calorimetry or UV-monitored melting techniques. To provide additional information about such structures, we demonstrate how electron paramagnetic resonance (EPR) active spin-labeled base analogues, base-specifically incorporated into the DNA, are monitors of the superposition of different bulge-mismatch conformations.
View Article and Find Full Text PDFSolid-state electron paramagnetic resonance (EPR) spectroscopy of commercial samples of isolated soy proteins (ISP) revealed a symmetrical free-radical signal typical of carbon-centered radicals (g= 2.005) ranging from 2.96 x 10(14) to 6.
View Article and Find Full Text PDFA simulated continuous wave electron paramagnetic resonance spectrum of a nitroxide spin label can be obtained from the Fourier transform of a free induction decay. It has been previously shown that the free induction decay can be calculated by solving the time-dependent stochastic Liouville equation for a set of Brownian trajectories defining the rotational dynamics of the label. In this work, a quaternion-based Monte Carlo algorithm has been developed to generate Brownian trajectories describing the global rotational diffusion of a spin-labeled protein.
View Article and Find Full Text PDFPrevious studies have shown that a single P327R point mutation in the cytoplasmic domain of band 3 (cdb3) protein, known as band 3 Tuscaloosa, leads to a reduction in protein 4.2 content of the erythrocyte membrane and hemolytic anemia. Recent studies have shown that this point mutation does not dissociate the cdb3 dimer, nor does it lead to large-scale rearrangement of the protein structure (Bustos, S.
View Article and Find Full Text PDFA tether-in-a-cone model is developed for the simulation of electron paramagnetic resonance spectra of dipolar coupled nitroxide spin labels attached to tethers statically disordered within cones of variable halfwidth. In this model, the nitroxides adopt a range of interprobe distances and orientations. The aim is to develop tools for determining both the distance distribution and the relative orientation of the labels from experimental spectra.
View Article and Find Full Text PDFThe Bloch equation containing a Zeeman modulation field is solved analytically by treating the Zeeman modulation frequency as a perturbation. The absorption and dispersion signals at both 0 degrees and 90 degrees modulation phase are obtained. The solutions are valid to first order in the modulation frequency, but are otherwise valid for any value of modulation amplitude or microwave amplitude.
View Article and Find Full Text PDFSaturation transfer electron paramagnetic resonance (ST-EPR) spectroscopy has been employed to characterize the very slow microsecond to millisecond rotational dynamics of a wide range of nitroxide spin-labeled proteins and other macromolecules in the past three decades. The vast majority of this previous work has been carried out on spectrometers that operate at X-band ( approximately 9 GHz) microwave frequency with a few investigations reported at Q-band ( approximately 34 GHz). EPR spectrometers that operate in the 94-250-GHz range and that are capable of making conventional linear EPR measurements on small aqueous samples have now been developed.
View Article and Find Full Text PDF