Wireless, passive, and flexible strain sensors can transform structural health monitoring across various applications by eliminating the need for wired connections and active power sources. Such sensors offer the dual benefits of operational simplicity and high-function adaptability. Herein, a novel wireless sensor is fabricated using radio frequency (RF) technology for passive, wireless measurement of mechanical strains.
View Article and Find Full Text PDFStructural health monitoring (SHM) is crucial for ensuring operational safety in applications like pipelines, tanks, aircraft, ships, and vehicles. Traditional embedded sensors have limitations due to expense and potential structural damage. A novel technology using radio frequency identification devices (RFID) offers wireless transmission of highly sensitive strain measurement data.
View Article and Find Full Text PDFStrain mapping over a large area usually requires an array of sensors, necessitating extensive and complex wiring. Our solution is based on creating multiple sensing regions within the area of a single capacitive sensor body by considering the sensor as an analogical transmission line, reducing the connections to only two wires and simplifying the electronic interface. We demonstrate the technology by using piezoresistive electrodes in a parallel plate capacitor that create varying proportions of electromagnetic wave dissipation through the sensor length according to the interrogation frequency.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2021
Accurate wireless strain monitoring is critical for many engineering applications. Capacitive strain sensors are well suited for remote sensing but currently have a limited sensitivity. This study presents a new approach for improving the sensitivity of electrical capacitance change-based strain sensors.
View Article and Find Full Text PDF