Nowadays, surgical removal remains the standard method to treat brain tumors. During surgery, the neurosurgeon may encounter difficulties to delimitate tumor boundaries and the infiltrating areas as they have a similar visual appearance to adjacent healthy zones. These infiltrating residuals increase the tumor recurrence risk, which decreases the patient's post-operation survival time.
View Article and Find Full Text PDFMeningioma is the most common primary intracranial extra-axial tumor. Total surgical removal is the standard therapeutic method to treat this type of brain tumors. However, the risk of recurrence depends on the tumor grade and the extent of the resection including the infiltrated dura mater and, if necessary, the infiltrated bone.
View Article and Find Full Text PDFWe report the design and characterization of a two-photon fluorescence imaging miniature probe. This customized two-axis scanning probe is dedicated for intraoperative two-photon fluorescence imaging endomicroscopic use and is based on a micro-electro-mechanical system (MEMS) mirror with a high reflectivity plate and two-level-ladder double S-shaped electrothermal bimorph actuators. The fully assembled probe has a total outer diameter of 4 mm including all elements.
View Article and Find Full Text PDFThe surgical outcome of brain tumor resection and needle biopsy is significantly correlated to the patient's prognosis. Brain tumor surgery is limited to resecting the solid portion of the tumor as current intraoperative imaging modalities are incapable of delineating infiltrative regions. For accurate delineation, in situ tissue interrogation at the submicron scale is warranted.
View Article and Find Full Text PDFAmong all the tumors of the central nervous system (CNS), glioma are the most deadly and the most malignant. Surgical resection is the standard therapeutic method to treat this type of brain cancer. But the diffusive character of these tumors create many problems for surgeons during the operation.
View Article and Find Full Text PDFTo complement a project toward label-free optical biopsy and enhanced resection which the overall goal is to develop a multimodal nonlinear endomicroscope, this multimodal approach aims to enhance the accuracy in classifying brain tissue into solid tumor, infiltration and normal tissue intraoperatively. Multiple optical measurements based on one- and two-photon spectral and lifetime autofluorescence, including second harmonic generation imaging, were acquired. As a prerequisite, studying the effect of the time of measurement postexcision on tissue's spectral/lifetime fluorescence properties was warranted, so spectral and lifetime fluorescences of fresh brain tissues were measured using a point-based linear endoscope.
View Article and Find Full Text PDFAccurate intraoperative tumour margin assessment is a major challenge in neurooncology, where sparse tumours beyond the bulk tumour are left undetected under conventional resection. Non-linear optical imaging can diagnose tissue at the sub-micron level and provide functional label-free histopathology in vivo. For this reason, a non-linear endomicroscope is being developed to characterize brain tissue intraoperatively based on multiple endogenous optical contrasts such as spectrally- and temporally-resolved fluorescence.
View Article and Find Full Text PDF