Objective: Non-invasive electroencephalograms (EEG)-based brain-computer interfaces (BCIs) play a crucial role in a diverse range of applications, including motor rehabilitation, assistive and communication technologies, benefiting users across various clinical spectrums. Effective integration of these applications into daily life requires systems that provide stable and reliable BCI control for extended periods. Our prior research introduced the AIRTrode, a self-adhesive (A), injectable (I), and room-temperature (RT) spontaneously-crosslinked hydrogel electrode (AIRTrode).
View Article and Find Full Text PDFRiemannian geometry-based classification (RGBC) gained popularity in the field of brain-computer interfaces (BCIs) lately, due to its ability to deal with non-stationarities arising in electroencephalography (EEG) data. Domain adaptation, however, is most often performed on sample covariance matrices (SCMs) obtained from EEG data, and thus might not fully account for components affecting covariance estimation itself, such as regional trends. Detrended cross-correlation analysis (DCCA) can be utilized to estimate the covariance structure of such signals, yet it is computationally expensive in its original form.
View Article and Find Full Text PDFSubject training is crucial for acquiring brain-computer interface (BCI) control. Typically, this requires collecting user-specific calibration data due to high inter-subject neural variability that limits the usability of generic decoders. However, calibration is cumbersome and may produce inadequate data for building decoders, especially with naïve subjects.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2023
Blood pressure (BP) is one of the four main vital signs in medicine and may be a useful signal for wellness tracking and for user-aware interfaces in human-computer interaction. The current standard for BP measurement uses cuff-based devices that block an artery temporarily to get a single, discrete measurement of BP. Recently, there have been significant efforts to measure correlates of BP continuously and non-invasively from relevant signals like photoplethysmography (PPG), which responds to volumetric changes in arteries due to blood pulsations.
View Article and Find Full Text PDFTo date, brain-computer interfaces (BCIs) have proved to play a key role in many medical applications, for example, the rehabilitation of stroke patients. For post-stroke rehabilitation, the BCIs require the EEG electrodes to precisely translate the brain signals of patients into intended movements of the paralyzed limb for months. However, the gold standard silver/silver-chloride electrodes cannot satisfy the requirements for long-term stability and preparation-free recording capability in wearable EEG devices, thus limiting the versatility of EEG in wearable BCI applications over time outside the rehabilitation center.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2019
This paper presents a setup for the real-time extraction of Electroencephalography (EEG) and Electrocardiogram (ECG) features indicating the level of focus, relaxation, or meditation of a given subject. An algorithm for detecting meditation in real-time using the extracted ECG features is designed and shown to lead to accurate results using an online ECG measurement dataset. Similar methods can be used for EEG data, such that the proposed measurement setup can be used, for example, for investigating the effect of virtual reality based EEG training, with and without neurofeedback, on the capability of subjects to focus, relax, or meditate.
View Article and Find Full Text PDFHeart failure is a class of cardiovascular diseases that remains the number one cause of death worldwide with a substantial economic burden of around $18 billion incurred by the healthcare sector in 2017 due to heart failure hospitalization and disease management. Although several laboratory tests have been used for early detection of heart failure, these traditional diagnostic methods still fail to effectively guide clinical decisions, prognosis, and therapy in a timely and cost-effective manner. Recent advances in the design and development of biosensors coupled with the discovery of new clinically relevant cardiac biomarkers are paving the way for breakthroughs in heart failure management.
View Article and Find Full Text PDF