Publications by authors named "Hussam Al-Barakati"

Peroxiredoxins (Prxs) are a protein superfamily, present in all organisms, that play a critical role in protecting cellular macromolecules from oxidative damage but also regulate intracellular and intercellular signaling processes involving redox-regulated proteins and pathways. Bioinformatic approaches using computational tools that focus on active site-proximal sequence fragments (known as active site signatures) and iterative clustering and searching methods (referred to as TuLIP and MISST) have recently enabled the recognition of over 38,000 peroxiredoxins, as well as their classification into six functionally relevant groups. With these data providing so many examples of Prxs in each class, machine learning approaches offer an opportunity to extract additional information about features characteristic of these protein groups.

View Article and Find Full Text PDF

Machine learning has become one of the most popular choices for developing computational approaches in protein structural bioinformatics. The ability to extract features from protein sequence/structure often becomes one of the crucial steps for the development of machine learning-based approaches. Over the years, various sequence, structural, and physicochemical descriptors have been developed for proteins and these descriptors have been used to predict/solve various bioinformatics problems.

View Article and Find Full Text PDF

Malonylation, which has recently emerged as an important lysine modification, regulates diverse biological activities and has been implicated in several pervasive disorders, including cardiovascular disease and cancer. However, conventional global proteomics analysis using tandem mass spectrometry can be time-consuming, expensive and technically challenging. Therefore, to complement and extend existing experimental methods for malonylation site identification, we developed two novel computational methods for malonylation site prediction based on random forest and deep learning machine learning algorithms, RF-MaloSite and DL-MaloSite, respectively.

View Article and Find Full Text PDF

Glutarylation, which is a newly identified posttranslational modification that occurs on lysine residues, has recently emerged as an important regulator of several metabolic and mitochondrial processes. However, the specific sites of modification on individual proteins, as well as the extent of glutarylation throughout the proteome, remain largely uncharacterized. Though informative, proteomic approaches based on mass spectrometry can be expensive, technically challenging and time-consuming.

View Article and Find Full Text PDF

Protein S-sulfenylation, which results from oxidation of free thiols on cysteine residues, has recently emerged as an important post-translational modification that regulates the structure and function of proteins involved in a variety of physiological and pathological processes. By altering the size and physiochemical properties of modified cysteine residues, sulfenylation can impact the cellular function of proteins in several different ways. Thus, the ability to rapidly and accurately identify putative sulfenylation sites in proteins will provide important insights into redox-dependent regulation of protein function in a variety of cellular contexts.

View Article and Find Full Text PDF