In the original manuscript, we reported the demonstration of an integrated microfluidic chip that performed helicase dependent amplification (HDA) on samples containing live bacteria. Bacterial lysis, nucleic acid extraction, and DNA amplification with a fluorescent reporter were incorporated into a disposable polymer cartridge format. We reported that the device was able to detect as few as 10 colony-forming units (CFU) of E.
View Article and Find Full Text PDFHere we report the demonstration of an integrated microfluidic chip that performs helicase dependent amplification (HDA) on samples containing live bacteria. Combined chip-based sample preparation and isothermal amplification are attractive for world health applications, since the need for instrumentation to control flow rate and temperature changes are reduced or eliminated. Bacteria lysis, nucleic acid extraction, and DNA amplification with a fluorescent reporter are incorporated into a disposable polymer cartridge format.
View Article and Find Full Text PDFSepsis caused by gram positive and gram negative bacteria is the leading cause of death in noncoronary ICUs and the tenth leading cause of death in the United States. We have developed a microfluidic sample preparation platform for rapid on-chip detection of infectious organisms for point-of-care diagnostics. The microfluidic chips are made of a robust thermoplastic and can be easily multiplexed for high throughput applications.
View Article and Find Full Text PDF