Publications by authors named "Hussam A Khatib"

The tendency for viologen radical cations to dimerize has been harnessed to establish a recognition motif based on their ability to form extremely strong inclusion complexes with cyclobis(paraquat-p-phenylene) in its diradical dicationic redox state. This previously unreported complex involving three bipyridinium cation radicals increases the versatility of host-guest chemistry, extending its practice beyond the traditional reliance on neutral and charged guests and hosts. In particular, transporting the concept of radical dimerization into the field of mechanically interlocked molecules introduces a higher level of control within molecular switches and machines.

View Article and Find Full Text PDF

Time and time again humanity is faced with a unifying global crisis that crosses the many great divides in different societies and serves to bring once segregated communities back together as a collective whole. This global community instinctively turns to science to develop the means of addressing its most pressing problems. More often than not, these forces dictate the direction that scientific research takes.

View Article and Find Full Text PDF

An approach to the design and fabrication of mechanized mesoporous silica nanoparticles is demonstrated at the proof of principle level. It relies on the reductive cleavage of disulfide bonds within an integrated nanosystem, wherein surface-bound rotaxanes incorporate disulfide bonds in their stalks, which are encircled by cucurbit[6]uril or alpha-cyclodextrin rings, until reductive chemistry is performed, resulting in the snapping of the stalks of the rotaxanes, leading to cargo release from the inside of the nanoparticles.

View Article and Find Full Text PDF

A strategy towards increasing the lifetime of the metastable state of a [2]rotaxane incorporating tetrathiafulvalene, 1,5-dioxynaphthalene and bipyridinium (BIPY(2+)) is presented. Incorporation of BIPY(2+) served multiple roles as an electrostatic barrier to relaxation, a supramolecular recognition site for bis-1,5-dioxynaphthalene[38]crown-10 macrocycle, and upon reduction a recognition site for the mechanically bonded cyclobis(paraquat-p-phenylene) ring.

View Article and Find Full Text PDF

A new category of mechanized nanoparticles, consisting of a hollow mesoporous silica spherical framework controlled by a supramolecular system containing the alpha-cyclodextrin (alpha-CD) ring on a stalk that is tethered to the pore openings on the nanosphere, is synthesized and tested. Construction of the nanovalve relies on the hydrogen-bonding interaction between alpha-CD and the stalk. The stalk is bonded to the nanoparticle chemically and contains an anilino group that is located on the end of the linker molecule that is closest to the pore entrance.

View Article and Find Full Text PDF

A [2]pseudorotaxane-based mechanised nanoparticle system, which operates within an aqueous acidic environment, has been prepared and characterised; this integrated system affords both water-soluble stalk and ring components in an effort to improve the biocompatibility of these promising new drug delivery vehicles.

View Article and Find Full Text PDF

Mechanized nanoparticles (MNPs) consisting of supramolecular machines attached to the surface of mesoporous silica nanoparticles are designed to release encapsulated guest molecules controllably under pH activation. The molecular machines are comprised of cucurbit[6]uril (CB[6]) rings that encircle tethered trisammonium stalks and can be tuned to respond under specific pH conditions through chemical modification of the stalks. Luminescence spectroscopy demonstrates that the MNPs are able to contain guest molecules within nanopores at neutral pH levels and then release them once the pH is lowered or raised.

View Article and Find Full Text PDF

Degenerate [2]rotaxanes, with their two identical binding sites, generally exhibit equilibrium dynamics with free energies of activation (DeltaG(double dagger)) for the shuttling process starting as low as 10 kcal x mol(-1). This DeltaG(double dagger) value can be raised quite dramatically by inserting "speed bumps" in the form of steric and/or electrostatic barriers into the linkers between the two identical binding sites. In our more recent research targeted toward the exploitation of the 4,4'-azobiphenyloxy unit (ABP) as a light-operated gate, we decided to introduce (i) four methyl groups on the one hand and (ii) four fluorine atoms on the other, at the 3,5,3',5'-positions of the ABP units to curtail binding by the CBPQT(4+) ring if not sterically in the case of i, then electronically in the case of ii.

View Article and Find Full Text PDF

Mesoporous silica (MCM-41) nanoparticles modified by azobenzene derivatives, capable of storing small molecules and releasing them following light irradiation, have been fabricated and characterized. In the presence of the beta-cyclodextrin and/or pyrene-modified beta-cyclodextrin rings, the beta-cyclodextrin and/or pyrene-modified beta-cyclodextrin rings will thread onto the azobenzene-containing stalks and bind to trans-azobenzene units to form the pseudorotaxanes, thus sealing the nanopores and stopping release of the cargo. Upon irradiation, the isomerization of trans-to-cis azobenzene units leads to the dissociation of the beta-cyclodextrin and/or pyrene-modified beta-cyclodextrin rings from the stalks, thus opening the gates to the nanopores and releasing the cargo.

View Article and Find Full Text PDF