Publications by authors named "Hussain Munavar"

DNA integrity in bacteria is regulated by various factors that act on the DNA. trans-translation has previously been shown to be important for the survival of Escherichia coli cells exposed to certain DNA-damaging agents. However, the mechanisms underlying this sensitivity are poorly understood.

View Article and Find Full Text PDF

The Hsp18 protein is a major T-cell antigen of Mycobacterium leprae belonging to the family of small heat-shock proteins. The protein is specifically regulated at post-translational level during the intracellular growth of M. leprae within macrophages due to auto-phosphorylation, indicating its importance in the survival of the bacterium.

View Article and Find Full Text PDF

The tmRNA (transfer messenger RNA), encoded by ssrA gene, is involved in rescuing of stalled ribosomes by a process called trans-translation. Additionally, regions of the ssrA gene (coding for tmRNA) were reported to serve as integration sites for various bacteriophages. Though variations in ssrA genes were reported, their functional relevance is less studied.

View Article and Find Full Text PDF

Rifampicin (RIF) is still a first line of antibiotic in the treatment of bacterial diseases, in particular the Mycobacterial infections. The antimicrobial activity of RIF is attributed to its ability to inhibit transcription by binding to the β subunit of bacterial RNA polymerase (encoded by rpoB). Continued use of this drug resulted in the emergence of RIF resistant rpoB mutations in a high frequency that compels the use of RIF almost exclusively in drug combinations.

View Article and Find Full Text PDF

Δlon mutant of Escherichia coli becomes hypersensitive to DNA damaging agents and over-produce capsule due to stabilization of the Lon substrates, namely, SulA and RcsA, respectively. These phenotypes were earlier found to be suppressed in Δlon ssrA::cat/pUC4 K and Δlon faa (DnaJ, G232D) strains, called as "Alp" strains. We observed that a plasmid carrying an E.

View Article and Find Full Text PDF

The data presented in this article shows the microarray based transcriptome profiles of ∆ and ∆ strains of . The mutation namely, was isolated spontaneously in the background of ∆ strain (over-produces colanic acid capsular polysaccharide) as a suppressor for over-production of colanic acid capsular polysaccharide (Meenakshi and Munavar, 2015) [1]. The strains were grown in LB medium at 30 °C overnight in duplicates.

View Article and Find Full Text PDF

It is well established that in , the histone-like nucleoid structuring (H-NS) protein also functions as negative regulator of transcription. However, the exact mode of regulation of transcription by H-NS has not been studied extensively. Here, we report the multicopy effect of dominant-negative alleles on the transcription of based on expression of transcriptional fusion in ∆, ∆, ∆ and strains.

View Article and Find Full Text PDF

Analyses of mutations in rpoB subunit of Escherichia coli that lead to resistance to rifampicin have been invaluable in providing insight into events during transcription continue to be discovered. Earlier we reported that rpoB12 suppresses over-expression of cps genes in Δlon mutant of E. coli, by interfering with the transcription of rcsA.

View Article and Find Full Text PDF

As of date the two temperature sensitive mutations isolated in pheST operon include pheS5 (G →A ) and pheT354. Recently, we reported that G of pheS defines a hot spot for intragenic suppressors of pheS5. In this investigation, in 13 independent experiments, a collection of temperature sensitive mutants were isolated by localized mutagenesis.

View Article and Find Full Text PDF

Aim: The ssrA mutants were found to be more sensitive to mitomycin C (MMC) and our aim was to study this phenomenon in detail.

Materials & Methods: Strains were constructed by P1 transduction. pssrA plasmid was constructed by PCR-based cloning and transformation was done by CaCl method.

View Article and Find Full Text PDF

Analyses of mutations in genes coding for subunits of RNA polymerase always throw more light on the intricate events that regulate the expression of gene(s). Lon protease of Escherichia coli is implicated in the turnover of RcsA (positive regulator of genes involved in capsular polysaccharide synthesis) and SulA (cell division inhibitor induced upon DNA damage). Failure to degrade RcsA and SulA makes lon mutant cells to overproduce capsular polysaccharides and to become sensitive to DNA damaging agents.

View Article and Find Full Text PDF

The pheS5 Ts mutant of Escherichia coli defined by a G293 → A293 transition, which is responsible for thermosensitive Phenylalanyl-tRNA synthetase has been well studied at both biochemical and molecular level but genetic analyses pertaining to suppressors of pheS5 were hard to come by. Here we have systematically analyzed a spectrum of Temperature-insensitive derivatives isolated from pheS5 Ts mutant and identified two intragenic suppressors affecting the same base pair coordinate G673 (pheS19 defines G673 → T673 ; Gly225 → Cys225 and pheS28 defines G673 → C673 ; Gly225 → Arg225). In fact in the third derivative, the intragenic suppressor originally named pheS43 (G673 → C673 transversion) is virtually same as pheS28.

View Article and Find Full Text PDF

Very recently, we have reported about an unconventional mode of elicitation of Mitomycin C (MMC) specific resistance in lexA3 (SOS repair deficient) mutants due to a combination of Rif-Nal mutations (rpoB87-gyrA87). We have clearly shown that UvrB is mandatory for this unconventional MMC resistance in rpoB87-gyrA87-lexA3 strains and uvrB is expressed more even without DNA damage induction from its LexA dependent promoter despite the uncleavable LexA3 repressor. The rpoB87 allele is same as the rpoB3595 which is known to give rise to a fast moving RNA Polymerase and gyrA87 is a hitherto unreported Nal(R) allele.

View Article and Find Full Text PDF

An unconventional DNA repair termed SIR (SOS Independent Repair), specific to mitomycin C (MMC) damage elicited by a combination of specific Rif(R) (rpoB87) and Nal(R) (gyrA87) mutations in SOS un-inducible strains of Escherichia coli was reported by Kumaresan and Jayaraman (1988). We report here that the rpoB87 mutation defines a C(1565)→T(1565) transition changing S(522)→F(522) and gyrA87 defines a G(244)→A(244) transition changing D(82)→N(82). The reconstructed lexA3 rpoB87 gyrA87 strain (DM49RN) exhibited resistance to MMC but not to UV as expected.

View Article and Find Full Text PDF

Translational readthrough of nonsense codons is seen not only in organisms possessing one or more tRNA suppressors but also in strains lacking suppressors. Amber suppressor tRNAs have been reported to suppress only amber nonsense mutations, unlike ochre suppressors, which can suppress both amber and ochre mutations, essentially due to wobble base pairing. In an Escherichia coli strain carrying the lacZU118 episome (an ochre mutation in the lacZ gene) and harboring the supE44 allele, suppression of the ochre mutation was observed after 7 days of incubation.

View Article and Find Full Text PDF

The temperature sensitive transcription defective mutant of Escherichia coli originally called fitA76 has been shown to harbour two missense mutations namely pheS5 and fit95. In order to obtain a suppressor of fitA76, possibly mapping in rpoD locus, a Ts+ derivative (JV4) was isolated from a fitA76 mutant. It was found that JV4 neither harbours the lesions present in the original fitA76 nor a suppressor that maps in or near rpoD.

View Article and Find Full Text PDF

The major phenotypes of lon mutations, UV sensitivity and overproduction of capsule, are due to the stabilization of two substrates, SulA and RcsA. Inactivation of transfer mRNA (tmRNA) (encoded by ssrA), coupled with a multicopy kanamycin resistance determinant, suppressed both lon phenotypes and restored the rapid degradation of SulA. This novel protease activity was named Alp but was never identified further.

View Article and Find Full Text PDF