Controllable and visible delivery of therapeutic agents is critical for tumor precise therapy. Tumor targeting and deep penetration of therapeutic agents are still challenging issues for controllable delivery. Visible drug delivery with imaging navigation can optimize the treatment window for personalized medicine.
View Article and Find Full Text PDFChemotherapy is the recommended treatment for patients with advanced pancreatic ductal adenocarcinoma (PDAC). However, efficacy of traditional chemotherapy is not satisfactory due to the presence of a dense dysplastic tumor stroma which prevents drug accumulation in and deep penetration into tumors. To overcome these obstacles, we designed and synthesized peptide dendrimers as potentiators of conventional chemotherapy.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
July 2021
The severe side-effects and drug resistance development of conventional chemotherapy are mainly caused by poor tumor penetration as well as nonspecific biodistribution and insufficient cellular uptake of drugs. Herein a branched arginine-rich polymer was synthesized and co-administration of this polymer with doxorubicin, a model drug of chemotherapeutic agents, overcame simultaneously the three obstacles shown above. Co-incubation of the polymer promoted doxorubicin penetration deeply into multicellular tumor spheroids and internalization into cancer cells.
View Article and Find Full Text PDFDespite progress on DNA-assembled nanoparticle (NP) superstructures, their complicated synthesis procedures hamper their potential biomedical applications. Here, we present an exceptionally simple strategy for the synthesis of single-stranded DNA (ssDNA) assembled FeO supraparticles (DFe-SPs) as magnetic resonance contrast agents. Unlike traditional approaches that assemble DNA-conjugated NPs via Watson-Crick hybridization, our DFe-SPs are formed with a high yield through one-step synthesis and assembly of ultrasmall FeO NPs via ssDNA-metal coordination bridges.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
September 2019
Conventional chemotherapy is a standard care for many cancers at present. However, their severe dose-dependent side effects are the major impediment for successful cancer therapy. Herein nanoparticles were used as a potentiator to enhance the uptake of free chemotherapeutic agents by cancer cells during chemotherapy.
View Article and Find Full Text PDFAntimicrobial peptides (AMPs) are regarded as next-generation antibiotics to replace conventional antibiotics due to their rapid and broad-spectrum antimicrobial properties and far less sensitivity to the development of pathogen resistance. However, they are susceptible to proteolysis in vivo by endogenous or bacterial proteases as well as induce the lysis of red blood cells, which prevent their intravenous applications. In this work, polyion complex (PIC) micelles of the cationic AMP MSI-78 and the anionic copolymer methoxy poly(ethylene glycol)-b-poly(α-glutamic acid) (mPEG-b-PGlu) were prepared to develop novel antimicrobial agents for potential application in vivo.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
October 2018
Chlorambucil, a chemotherapeutic agent, is usually administered orally to treat chronic lymphocytic leukemia and some other types of cancers in regimens of conventional and metronomic chemotherapies. However, the hydrolytic instability of chlorambucil is a major limitation in achieving the optimum therapeutic performance. In this work, mesoporous polymeric microspheres were prepared by free radical suspension copolymerization of methyl acrylate and divinylbenzene in the presence of porogen.
View Article and Find Full Text PDFDespite extensive investigations, the clinical translation of nanocarrier-based drug delivery systems (NDDS) for cancer therapy is hindered by inefficient delivery and poor tumor penetration. Conventional chemotherapy by administration of free small molecule anticancer drugs remains the standard of care for many cancers. Herein, other than for carrying and releasing drugs, small nanoparticles were used as a potentiator of conventional chemotherapy by co-administration with free chemotherapeutic agents.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
September 2017
Methotrexate as a model drug with poor aqueous solubility was adsorbed into porous polymeric adsorbents, which was used as oral sustained release formulations. In vitro release assay in simulated gastrointestinal fluids showed that the methotrexate-loaded adsorbents showed distinct sustained release performance. The release rate increased with increase in pore size of the adsorbents.
View Article and Find Full Text PDFAddition polymerization usually results in polymers with long carbon-carbon main chains. Cyanoacrylate (CA) is arguably an important example of such polymerization and has gained widespread acceptance as an all-purpose adhesive. However, CA-based medical adhesives have never been approved by the U.
View Article and Find Full Text PDFAlthough PEG remains the gold standard for stealth functionalization in drug delivery field up to date, complete inhibition of protein corona formation on PEG-coated nanoparticles remains a challenge. To improve the stealth property of PEG, herein an α-glutamyl group was conjugated to the end of PEG and polymeric micelles with α-glutamyl-terminated PEG shells were prepared. After incubation with bovine serum albumin or in fetal calf serum, the size of the micelles changed slightly, while the size of the micelles of similar diblock copolymer but without α-glutamyl group increased markedly.
View Article and Find Full Text PDFA facile and highly efficient new approach (namely RAFT coupling chemistry) to obtain well-defined hydrophilic molecularly imprinted polymer (MIP) microspheres with excellent specific recognition ability toward small organic analytes in the real, undiluted biological samples is described. It involves the first synthesis of "living" MIP microspheres with surface-bound vinyl and dithioester groups via RAFT precipitation polymerization (RAFTPP) and their subsequent grafting of hydrophilic polymer brushes by the simple coupling reaction of hydrophilic macro-RAFT agents (i.e.
View Article and Find Full Text PDFA facile and highly efficient approach to obtain narrowly dispersed hydrophilic and magnetic molecularly imprinted polymer microspheres with molecular recognition ability in a real biological sample as good as what they show in the organic solvent-based media is described for the first time.
View Article and Find Full Text PDFMicelles with surface morpholino groups were stealthy at blood and normal tissue pH (7.4) due to the unprotonated hydrophilic morpholino groups on the surfaces. At tumor pH (<7), the micelle surfaces were positively charged because of the protonation of the morpholino groups, which promoted the cellular uptake of the micelles.
View Article and Find Full Text PDFMagnetic nanoparticles (MNPs) functionalized with specific ligands are emerging as a highly integrated platform for cancer targeting, drug delivery, and magnetic resonance imaging applications. In this study, we describe a multifunctional magnetic nanoparticle system (FITC-Tat MNPs) consisting of a fluorescently labeled cell penetrating peptide (FITC-Tat peptide), a biocompatible block copolymer PEG(600)-b-poly(glycerol monoacrylate) (PEG(600)-b-PGA), and a superparamagnetic iron oxide (SPIO) nanoparticle core. The particles were prepared by direct chemisorption of PEG(600)-b-PGA conjugated with FITC-Tat peptide on the SPIO nanoparticles.
View Article and Find Full Text PDFRandom and diblock copolymers of 2-(N,N-dimethylamino)ethyl methacrylate and butyl methacrylate are prepared by ATRP. As mimics of cationic antimicrobial peptides, the random and diblock copolymers show similar antimicrobial activities. In contrast, the diblock copolymers have much lower hemolytic activities than the random copolymers.
View Article and Find Full Text PDFMultifunctional nanocarriers with multilayer core-shell architecture were prepared by coating superparamagnetic Fe(3)O(4) nanoparticle cores with a mixture of the triblock copolymer methoxy poly(ethylene glycol)-b-poly(methacrylic acid-co-n-butyl methacrylate)-b-poly(glycerol monomethacrylate) and the folate-conjugated block copolymer folate-poly(ethylene glycol)-b-poly(glycerol monomethacrylate). The model anticancer agent adriamycin (ADR), containing an amine group and a hydrophobic moiety, was loaded into the nanocarrier at pH 7.4 by ionic bonding and hydrophobic interactions.
View Article and Find Full Text PDFNanocarriers with multilayer core-shell architecture were prepared by coating a superparamagnetic Fe(3)O(4) core with a triblock copolymer. The first block of the copolymer formed the biocompatible outermost shell of the nanocarrier. The second block that contains amino groups and hydrophobic moiety formed the inner shell.
View Article and Find Full Text PDFA 9-residue peptide, CP-1 (GLRILLLKV-NH(2)), is synthesized by solid-phase synthesis method. CP-1 is a C-terminal amidated derivative of a hydrophobic transmembrane segment (CP) of the T-cell antigen receptor (TCR) alpha-chain. CP-1 shows broad-spectrum antimicrobial activities against Gram-positive and Gram-negative bacteria with the minimal inhibitory concentration (MIC) values between 3 and 77microM.
View Article and Find Full Text PDFPEGylation of peptide drugs prolongs their circulating lifetimes in plasma. However, PEGylation can produce a decrease in the in vitro bioactivity. Longer poly(ethylene glycol) (PEG) chains are favourable for circulating lifetimes but unfavourable for in vitro bioactivities.
View Article and Find Full Text PDFPoly[(glycidyl methacrylate)-co-(glycerol monomethacrylate)]-grafted magnetic microspheres were prepared by graft random copolymerization via ATRP from polymer microspheres with dispersed Fe(3)O(4) nanoparticles. Penicillin G acylase (PGA) was immobilized onto the polymer brush-grafted magnetic microspheres. The immobilized PGA prepared with initial glycidyl methacrylate/glycerol monomethacrylate ratios of 40/60 to 60/40 possessed higher catalytic activity than that prepared with higher proportions of glycidyl methacrylate in the initial monomer mixture.
View Article and Find Full Text PDFMethoxypoly(ethylene glycol)-oligo(aspartic acid) (MPEG-Asp(n)-NH(2), n = 2-5) hybrid block copolymers were synthesized and used as stabilizers to prepare superparamagnetic Fe(3)O(4) nanoparticles with magnetite as the inner core and and poly(ethylene glycol) as the hydrophilic outer shell. The aqueous dispersions of the nanoparticles were stable at pH 2-11 and in 1M NaCl solution, when repeat number, n, was 3 or more. Transmission electron microscopy showed that the nanoparticles, stabilized with MPEG-Asp(3)-NH(2), were about 14 nm in diameter.
View Article and Find Full Text PDFThe goal of this work was to investigate the synergistic effect between the electrostatic and hydrophobic interactions upon the uptake of organic ions with hydrophobic moieties by ion-exchange resins with hydrophobic matrixes. The uptake of neutral amino acids by a macroporous polystyrene-based strongly acidic cation-exchange resin (D001) and two strongly acidic cation-exchange resins (poly(2-acrylamido-2-methyl propanesulfonic acid) and poly(vinylsulfonic acid)) with much less hydrophobic matrixes essentially follow an ion exchange stoichiometry. However, the thermodynamic parameters of the uptakes indicate that besides electrostatic interaction, hydrophobic interaction also contributes to the affinity of the amino acids with hydrophobic side chains for D001.
View Article and Find Full Text PDFIn our previous paper it was shown that the two C-terminal Gln residues of a C-terminal 15-residue fragment, Mel(12-26) (GLPALISWIKRKRQQ-NH2), of melittin and a series of individual substituted analogues might not involved in the interaction with bacterial membranes. In this paper, peptides with one and two Gln residues deletion, respectively, Mel(12-25) and Mel(12-24), were synthesized and characterized. Both of the deletion peptides showed higher antimicrobial activities than the parent peptide, Mel(12-26).
View Article and Find Full Text PDF