In response to the growing demand for high-value bioactive compounds, microalgae cultivation has gained a significant acceleration in recent years. Among these compounds, antioxidants have emerged as essential constituents in the food, pharmaceutical, and cosmetics industries. This study focuses on Micractinium sp.
View Article and Find Full Text PDFIn recent years, heavy metals derived from several anthropogenic sources have both direct and indirect detrimental effects on the health of the environment and living organisms. Whole-cell bioreporters (WCBs) that can be used to monitor the levels of heavy metals in drinking and natural spring waters are important. In this study, whole-cell arsenic bacterial bioreporters were immobilized using polycaprolactone (PCL) electrospun fibers as the support material.
View Article and Find Full Text PDFHerein, we report fluorescein-labelled silica nanoparticles (FSNP) which serve as fluorescent nano-chemosensors for sequential detection of Pb (which is a toxic heavy metal) and dipicolinic acid (DPA) (which is a distinctive indicator biomarker of bacterial spores) with high sensitivity and selectivity. The fluorescence of FSNP is quenched because of the complex formation between Pb ions and surface amide groups, however, the fluorescence is recovered in contact with DPA, resulting from the association of DPA with surface bound Pb ions. FSNP-Pb complexes show high sensitivity towards DPA with a low detection limit of 850 nM which is approximately seventy times lower than the infectious dosage of bacterial spores (60 μM).
View Article and Find Full Text PDFSARS-CoV-2 is still threat and mostly used detection method is real time reverse transcriptase polymerase chain reaction (rRT-PCR) for the open reading frame (Orf1ab), RNA-dependent RNA polymerase (RdRp), nucleocapsid (N) and envelope (E) genes of virus. However, rRT-PCR may have false negative rate for the nucleic acid detection. Since the RdRp/Orf1ab has high sensitivity for the molecular detection, two sandwich models, Model 1A-Model 1B, based on hybridization on lateral flow assay (LFA) were designed here and applied with the synthetic and clinical samples of RdRp/Orf1ab.
View Article and Find Full Text PDFArsenic contamination is a critical global problem, and its widespread environmental detection is becoming a prominent issue. Herein, electrospun fibers of cellulose acetate (CA) and polycaprolactone (PCL) were successfully fabricated and used as the support material for immobilization of arsenic-sensing bacterial bioreporter for the first time. To date, no attempt has been made to immobilize fluorescent whole-cell bioreporter cells on electrospun fibers for arsenic detection.
View Article and Find Full Text PDFA novel highly substituted and fluorescent aromatic-fused imidazole derivative has been synthesized by rational design. This novel fluorescent material acts as an alternative antibacterial agent against Gram positive bacteria strains. It shows superior antibacterial activity (with MIC value of 8 μg/mL) against methicillin-resistant Staphylococcus aureus (MRSA) when compared with standard antibiotic drugs Ampicillin (with MIC value of 128 μg/mL) and Kanamycin (with MIC value of >512 μg/mL).
View Article and Find Full Text PDFJ Environ Health Sci Eng
June 2020
Whole-cell bacterial biosensors hold great promise as a practical complementary approach for in-field detection of arsenic. Although there are various bacterial bioreporter systems for arsenic detection, fewer studies reported the immobilization of arsenic bioreporters. This study aimed at determining immobilization of specific bacterial bioreporter in agar and alginate biopolymers to measure level of arsenite and/or arsenate.
View Article and Find Full Text PDFJ Food Sci Technol
January 2019
Salmonella is among the very important pathogens threating the human and animal health. Rapid and easy detection of these pathogens is crucial. In this context, antibody (Ab) based lateral flow assays (LFAs) which are simple immunochromatographic point of care test kits were developed by gold nanoparticles (GNPs) as labelling agent for Salmonella detection.
View Article and Find Full Text PDFA novel ratiometric colorimetric and fluorescent dual probe based on Eriochrome Black T (EBT)-Eu complex was designed to detect dipicolinic acid (DPA), a major constituent of bacterial spores, with high sensitivity and selectivity. UV-vis titration experiments demonstrated that EBT and Eu ions formed a 1:1 coordination pair in water. In the presence of Eu ions, the blue solution of EBT changed to magenta, however, upon the addition of DPA, the magenta color changed to blue immediately and characteristic fluorescence emission from DPA-Eu complex was observed.
View Article and Find Full Text PDFTargeted drug delivery approaches have been implementing significant therapeutic gain for cancer treatment since last decades. Aptamers are one of the mostly used and highly selective targeting agents for cancer cells. Herein, we address a nano-sized targeted drug delivery approach adorned with A-172 glioblastoma cell-line-specific single stranded DNA (ssDNA) aptamer in which the chemotherapeutic agent Doxorubicin (DOX) had been conjugated.
View Article and Find Full Text PDFDirect disposal of vinasse, a by-product of molasses fermentation plants, threatens environmental health. This study investigated the usage of vinasse as a nutrient source for the heterotrophic and mixotrophic cultivation of novel Micractinium sp. ME05.
View Article and Find Full Text PDFLateral flow assay (LFA), or the immunochromatographic strip test, is popular to use for rapid and sensitive immunoassays. Gold nanoparticles (GNPs), due to tunable optical characteristics and easy manipulation of size or shape, represent an attractive approach for LFA technology. Since most enterohemorrhagic infections result from water and food contaminations of Escherichia coli O157:H7, selective and rapid detection of this organism in environmental and biological complexes is necessary.
View Article and Find Full Text PDFA novel chitosan-based ratiometric fluorescent probe incorporating an EDTA-Eu complex as the sensing unit and fluorescein dye as the internal standard was designed to detect dipicolinic acid (DPA) as an anthrax biomarker with high sensitivity and selectivity. The fluorescence intensity of fluorescein dye attached to the chitosan backbone remains constant as an internal reference, while the Eu emission increased linearly upon the consecutive addition of DPA. The selectivity studies were performed by adding different competitive aromatic ligands to the sensing environment and no signifacant fluorescence response was observed.
View Article and Find Full Text PDFTo monitor the specificity of Staphylococcus aureus aptamer (SA-31) against its target cell, we used enzyme-linked aptamer assay. In the presence of target cell, horseradish peroxidase-conjugated streptavidin bound to biotin-labeled SA-31 showed specific binding to S aureus among 3 different bacteria with limit of detection of 10 colony-forming unit per milliliter. The apparent K was 1.
View Article and Find Full Text PDFA fast, sensitive and ratiometric biosensor strategy for small molecule detection was developed through nanopore actuation. The new platform engineers together, a highly selective molecular recognition element, aptamers, and a novel signal amplification mechanism, gated nanopores. As a proof of concept, aptamer gated silica nanoparticles have been successfully used as a sensing platform for the detection of ATP concentrations at a wide linear range from 100 μM up to 2 mM.
View Article and Find Full Text PDFDespite the vast interest in microalgae as feedstock for biodiesel production, relatively few studies examined their response to diurnal temperature fluctuation. Here, we describe biomass and lipid productivities and fatty acid profiles of thermo-resistant Micractinium sp. and Scenedesmus sp.
View Article and Find Full Text PDFThis chapter describes an efficient Agrobacterium-mediated genetic transformation of lentil by use of cotyledonary node explants, an optimized wounding method, and vacuum infiltration. Transformation protocol was followed by direct regeneration of transgenic shoots and micrografting of the shoots on root stocks to obtain whole-plant regeneration. The most efficient transgene expression on the axil region was obtained when the Agrobacterium KYRT1 strain was used.
View Article and Find Full Text PDFOil content and composition, biomass productivity and adaptability to different growth conditions are important parameters in selecting a suitable microalgal strain for biodiesel production. Here, we describe isolation and characterization of three green microalgal species from geothermal flora of Central Anatolia. All three isolates, namely, Scenedesmus sp.
View Article and Find Full Text PDFBacterial resistance is a high priority clinical issue worldwide. Thus, an effective system that rapidly provides specific treatment for bacterial infections using controlled dose release remains an unmet clinical need. Herein, we report on the NanoKeepers approach for the specific targeting of S.
View Article and Find Full Text PDFBiotechnol Appl Biochem
October 2015
A low-cost, portable, and disposable paper-type tyrosinase biosensor was developed for determination of phenolic compounds, using a paper-strip absorption method. Tyrosinase and a chromophore (3-methyl-2-benzothiazolinone hydrazone) were immobilized on paper strips to manufacture the biosensor, which was tested on a nontoxic substrate (l-dopamine). The biosensor was responsive to phenolic compounds such as 4-chlorophenol, catechol, m-cresol, and p-cresol.
View Article and Find Full Text PDFThe presence of pathogenic bacteria is a major health risk factor in food samples and the commercial food supply chain is susceptible to bacterial contamination. Thus, rapid and sensitive identification methods are in demand for the food industry. Quantitative polymerase chain reaction (PCR) is one of the reliable specific methods with reasonably fast assay times.
View Article and Find Full Text PDFJ Anal Methods Chem
August 2013
A paper-based biosensor was developed for the detection of the degradation products of organophosphorus pesticides. The biosensor quantifies acetylcholine esterase inhibitors in a fast, disposable, cheap, and accurate format. We specifically focused on the use of sugar or protein stabilizer to achieve a biosensor with long shelf-life.
View Article and Find Full Text PDFIn this study, combining the nanoparticle embedded sensors with lateral flow assays, a novel strategy for ensuring the quality of signalling in lateral flow assays (LFAs) was developed. A LFA for reactive oxygen species (ROS) is reported that is based on horse radish peroxidase (HRP) which is co-entrapped with Texas Red dextran inside porous polyacrylamide nanoparticles. In this system, enzymes are protected in the porous matrix of polyacrylamide which freely allows the diffusion of the analyte.
View Article and Find Full Text PDFDiscovery of alternative sources of antimicrobial agents are essential in the ongoing battle against microbial pathogens. Legislative and scientific challenges considerably hinder the discovery and use of new antimicrobial drugs, and new approaches are in urgent demand. On the other hand, rapid, specific and sensitive detection of airborne pathogens is becoming increasingly critical for public health.
View Article and Find Full Text PDFAptamer probes for specific recognition of glioblastoma multiforme were generated using a repetitive and broad cell-SELEX-based procedure without negative selection. The 454 sequencing technology was used to monitor SELEX, and bioinformatics tools were used to identify aptamers from high throughput data. A group of aptamers were generated that can bind to target cells specifically with dissociation constants (K(d)) in the nanomolar range.
View Article and Find Full Text PDF