Publications by authors named "Husein H Bahti"

In this research a portable potentiostat was built for electrochemical sensing measurements with three electrodes, specifically SPCEs. The circuit uses a microcontroller as the main controller to manage all activities, starting from adjusting the input voltage for the SPCEs, setting measurement parameters, measuring the resulting current, displaying graphics on the touch screen, sending data to the computer via the USB port, and connecting to the SD card. Measurements and errors with cyclic voltammetry techniques have been compared with commercial potentiostats.

View Article and Find Full Text PDF

Nanoceria (cerium oxide nanoparticles: CeO-NPs) has received significant attention due to its biocompatibility, good conductivity, and the ability to transfer oxygen. Nanoceria has been widely used to develop electrochemical sensors and biosensors as it could increase response time, sensitivity, and stability of the sensor. In this review, we discussed synthesis methods, and the recent applications employing CeO-NPs for electrochemical detection of various analytes reported in the most recent four years.

View Article and Find Full Text PDF

Epithelial sodium channel (ENaC) is a transmembrane protein that has an essential role in maintaining the levels of sodium in blood plasma. A person with a family history of hypertension has a high enough amount of ENaC protein in the kidneys or other organs, so that the ENaC protein acts as a marker that a person is susceptible to hypertension. An aptasensor involves aptamers, which are oligonucleotides that function similar to antibodies, as sensing elements.

View Article and Find Full Text PDF

The development of methods for the efficient and reliable separation and routine analysis of rare-earth elements (REEs), including samarium (Sm), proceeds to draw in the interest of the many researchers, attributable to the similar physical and chemical properties of these elements. Note that although the voltammetric determination of Sm has been described in the literature, thus far, no chemometric and voltammetric methods for the quantification of the element in its mixtures with other lanthanides in an acetonitrile solution have been reported. This work was aimed toward the advancement of a method for the detection of Sm in acetonitrile, the intended function of which was to obtain a selective current response of Sm by Differential Pulse Voltammetry, utilizing the Box-Behnken experimental design, to identify the best conditions for the determination.

View Article and Find Full Text PDF