Facioscapulohumeral muscular dystrophy (FSHD) is a prevalent, incurable myopathy, linked to epigenetic derepression of D4Z4 repeats on chromosome 4q, leading to ectopic DUX4 expression. FSHD patient myoblasts have defective myogenic differentiation, forming smaller myotubes with reduced myosin content. However, molecular mechanisms driving such disrupted myogenesis in FSHD are poorly understood.
View Article and Find Full Text PDFFacioscapulohumeral muscular dystrophy (FSHD) is a prevalent, incurable myopathy, linked to hypomethylation of D4Z4 repeats on chromosome 4q causing expression of the DUX4 transcription factor. However, DUX4 is difficult to detect in FSHD muscle biopsies and it is debatable how robust changes in DUX4 target gene expression are as an FSHD biomarker. PAX7 is a master regulator of myogenesis that rescues DUX4-mediated apoptosis.
View Article and Find Full Text PDFThe mechanisms underlying the neurodevelopmental deficits associated with CHARGE syndrome, which include cerebellar hypoplasia, developmental delay, coordination problems, and autistic features, have not been identified. CHARGE syndrome has been associated with mutations in the gene encoding the ATP-dependent chromatin remodeler CHD7. CHD7 is expressed in neural stem and progenitor cells, but its role in neurogenesis during brain development remains unknown.
View Article and Find Full Text PDFBack in 2003, we published 'MAX' randomization, a process of non-degenerate saturation mutagenesis using exactly 20 codons (one for each amino acid) or else any required subset of those 20 codons. 'MAX' randomization saturates codons located in isolated positions within a protein, as might be required in enzyme engineering, or else on one face of an α-helix, as in zinc-finger engineering. Since that time, we have been asked for an equivalent process that can saturate multiple contiguous codons in a non-degenerate manner.
View Article and Find Full Text PDF