This paper proposes a multi-objective optimization model for anti-symmetric cylindrical shell in the bionic gripper structure. Here, the response surface method is used to establish multiple surrogate models of the anti-symmetric cylindrical shell, and the non-dominated sorting genetic algorithm-II (NSGA-II) is used to optimize the design space of the anti-symmetric cylindrical shell; the design points of the anti-symmetric cylindrical shell are verified by experimental methods. The optimization goals are that the first steady state transition load (the transition process of the bionic gripper structure from the open state to the closed state) of the anti-symmetric cylindrical shell is minimized, and the second steady state transition load (the transition process of the bionic gripper structure from the closed state to the open state) is the largest.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
April 2004
The mechanism(s) underlying stress-induced colonic hypersensitivity (SICH) are incompletely understood. Our aims were to assess the acute and delayed (24 h) effect of water avoidance (WA) stress on visceral nociception in awake male Wistar rats and to evaluate the role of two stress-related modulation systems: the substance P/neurokinin-1 receptor (SP/NK(1)R) and the corticotropin-releasing factor (CRF)/CRF(1) receptor (CRF/CRF(1)R) systems, as well as the possible involvement of the sympathetic nervous system. Visceral pain responses were measured as the visceromotor response to colorectal distension (CRD) at baseline, immediately after WA and again 24 h later.
View Article and Find Full Text PDFThe stress response involves the activation of two corticotropin-releasing factor (CRF) receptor subtypes. We investigated the role of CRF1 in stress-related visceral responses. A novel water-soluble tricyclic CRF1 antagonist, NBI 35965 was developed that displayed a high affinity for CRF1 (Ki approximately 4 nM) while having no binding affinity to CRF2.
View Article and Find Full Text PDF