Publications by authors named "Huotari S"

Resonant inelastic X-ray scattering (RIXS) is an ideal X-ray spectroscopy method to push the combination of energy and time resolutions to the Fourier transform ultimate limit, because it is unaffected by the core-hole lifetime energy broadening. Also, in pump-probe experiments the interaction time is made very short by the same core-hole lifetime. RIXS is very photon hungry so it takes great advantage from high-repetition-rate pulsed X-ray sources like the European XFEL.

View Article and Find Full Text PDF

Background: Structural analysis of soft biological tissues is conventionally done with destructive 2D histology. 3D information can be accessed with non-invasive imaging methods, such as X-ray micro-computed tomography (micro-CT). While attenuation-based X-ray imaging alone does not provide reasonable contrast with soft-tissue samples, the combination with contrast-enhancing staining has proven effective.

View Article and Find Full Text PDF

Despite its ubiquitous nature, the atomic structure of water in its liquid state is still controversially debated. We use a combination of X-ray Raman scattering spectroscopy in conjunction with ab initio and path integral molecular dynamics simulations to study the local atomic and electronic structure of water under high pressure conditions. Systematically increasing fingerprints of non-hydrogen-bonded H[Formula: see text]O molecules in the first hydration shell are identified in the experimental and computational oxygen K-edge excitation spectra.

View Article and Find Full Text PDF

The widespread use of high-capacity Ni-rich layered oxides such as LiNiMnCoO (NMC811), in lithium-ion batteries is hindered due to practical capacity loss and reduced working voltage during operation. Aging leads to defective NMC811 particles, affecting electrochemical performance. Surface modification offers a promising approach to improve cycle life.

View Article and Find Full Text PDF

X-ray phase-contrast imaging has become a valuable tool for biomedical research due to its improved contrast abilities over regular attenuation-based imaging. The recently emerged Talbot-Lau interferometer can provide quantitative attenuation, phase-contrast and dark-field image data, even with low-brilliance x-ray tube sources. Thus, it has become a valid option for clinical environments.

View Article and Find Full Text PDF
Article Synopsis
  • Plasmonic photocatalysis traditionally relies on expensive materials like silver (Ag) and gold (Au), which limits its widespread use.
  • Researchers developed a new method using affordable materials, specifically HMoO and palladium (Pd), through a solventless mechanochemical synthesis, enhancing photocatalytic activity in the visible spectrum.
  • By studying the effects of different light excitation wavelengths on photocatalytic reactions, they found that combining two specific wavelengths led to a 110% improvement in efficiency, demonstrating the potential for creating cost-effective visible-light photocatalysts with readily available materials.
View Article and Find Full Text PDF

Hierarchical self-assemblies of soft matter involving triggerable or switchable structures at different length scales have been pursued toward multifunctional behaviors and complexity inspired by biological matter. They require several and balanced competing attractive and repulsive interactions, which provide a grand challenge in particular in the "bulk" state, i.e.

View Article and Find Full Text PDF

Manganese dioxide is a good candidate for effective energy storage and conversion as it possesses rich electrochemistry. The compound also shows a wide polymorphism. The γ-variety, an intergrowth of β- and R-MnO, has been extensively studied in several types of batteries (e.

View Article and Find Full Text PDF

In this article, we demonstrate the viability of highly monochromatic full-field X-ray absorption near edge structure based tomography using a laboratory-scale Johann-type X-ray absorption spectrometer utilising a conventional X-ray tube source. In this proof-of-concept, by using a phantom embedded with elemental Se, Na[Formula: see text]SeO[Formula: see text], and Na[Formula: see text]SeO[Formula: see text], we show that the three-dimensional distributions of Se in different oxidation states can be mapped and distinguished from the phantom matrix and each other with absorption edge contrast tomography. The presented method allows for volumetric analyses of chemical speciation in mm-scale samples using low-brilliance X-ray sources, and represents a new analytic tool for materials engineering and research in many fields including biology and chemistry.

View Article and Find Full Text PDF
Article Synopsis
  • The paper explores the use of laboratory-scale X-ray absorption spectroscopy to study nanometer-scale thin films, focusing on CuI and CuO films produced through atomic layer deposition.
  • The researchers show that X-ray absorption near edge structure (XANES) spectra can be rapidly obtained from very thin films (down to 12 nm) in a matter of minutes, while extended X-ray absorption fine structure (EXAFS) data requires a few days.
  • An experiment demonstrating the oxidation of a thicker (248 nm) CuI film at 240 °C highlights the effectiveness of these methods for advancing inorganic thin film research.
View Article and Find Full Text PDF

Laboratory-based X-ray absorption spectroscopy (XAS) and especially X-ray absorption near-edge structure (XANES) offers new opportunities in catalyst characterization and presents not only an alternative, but also a complementary approach to precious beamtime at synchrotron facilities. We successfully designed a laboratory-based setup for performing operando, quasi-simultaneous XANES analysis at multiple K-edges, more specifically, operando XANES of mono-, bi-, and trimetallic CO hydrogenation catalysts containing Ni, Fe, and Cu. Detailed operando XANES studies of the multielement solid catalysts revealed metal-dependent differences in the reducibility and re-oxidation behavior and their influence on the catalytic performance in CO hydrogenation.

View Article and Find Full Text PDF

Hypolimnetic withdrawal provides a way to remove phosphorus (P) from eutrophic lakes, but the method is still rarely combined with water treatment for capturing this P. Thus, little is known about the chemical interactions of P and other elements upon the treatment of hypolimnetic lake water. We investigated these chemical processes in a hypolimnetic withdrawal and treatment system (HWTS) in which hypolimnetic water is first led into a treatment unit for dissolved P (dP) precipitation and subsequently filtered before being circulated back into the lake.

View Article and Find Full Text PDF

An ambient pressure cell is described for conducting synchrotron-based x-ray photoelectron spectroscopy (XPS) measurements during atomic layer deposition (ALD) processes. The instrument is capable of true in situ and operando experiments in which it is possible to directly obtain elemental and chemical information from the sample surface using XPS as the deposition process is ongoing. The setup is based on the ambient pressure XPS technique, in which sample environments with high pressure (several mbar) can be created without compromising the ultrahigh vacuum requirements needed for the operation of the spectrometer and the synchrotron beamline.

View Article and Find Full Text PDF

The diversity and safety of nanofibrillated cellulose (NFC) hydrogels have gained a vast amount of interest at the pharmaceutical site in recent years. Moreover, this biomaterial has a high potential to be utilized as a protective matrix during the freeze-drying of heat-sensitive pharmaceuticals and biologics to increase their properties for long-term storing at room temperature and transportation. Since freeze-drying and subsequent reconstitution have not been optimized for this biomaterial, we must find a wider understanding of the process itself as well as the molecular level interactions between the NFC hydrogel and the most suitable lyoprotectants.

View Article and Find Full Text PDF

In the recent years, the advent of an efficient and compact laboratory-scale spectrometer for x-ray absorption spectroscopy experiments has been extensively reported in the literature. Such modern instruments offer the advantage to routinely use x-ray absorption spectroscopy on systematic studies, which is usually unconceivable at synchrotron radiation source facilities due to often limited time access. However, one limiting factor is the fact that due to laboratory x-ray source brightness compared to a synchrotron, two separate measures of the incoming and transmitted x-ray intensities, i.

View Article and Find Full Text PDF

We present a combined theoretical and experimental study of X-ray optical wave mixing. This class of nonlinear phenomena combines the strengths of spectroscopic techniques from the optical domain, with the high-resolution capabilities of X-rays. In particular, the spectroscopic sensitivity of these phenomena can be exploited to selectively probe valence dynamics.

View Article and Find Full Text PDF

Toroidally and spherically bent single crystals are widely employed as optical elements in hard X-ray spectrometry at synchrotron and free-electron laser light sources, and in laboratory-scale instruments. To achieve optimal spectrometer performance, a solid theoretical understanding of the diffraction properties of such crystals is essential. In this work, a general method to calculate the internal stress and strain fields of toroidally bent crystals and how to apply it to predict their diffraction properties is presented.

View Article and Find Full Text PDF

Core-shell nanoparticles represent a class of materials that exhibit a variety of properties. By rationally tuning the cores and the shells in such nanoparticles (NPs), a range of materials with tailorable properties can be produced which are of interest for a wide variety of applications. Herein, experimental and theoretical approaches have been combined to show the structural transformation of NPs resulting to the formation of either NiFeC encapsulated in ultra-thin graphene layer (NiFe@UTG) or NiC/FeC@FeO NPs with the universal one-step pulse laser ablation in liquid (PLAL) method.

View Article and Find Full Text PDF

Wide angle x-ray scattering of supercooled water down to 234.8 K was studied using high energy x rays at the European Synchrotron Radiation Facility. The oxygen-oxygen pair distribution function (PDF) was calculated from the scattering pattern out to the 5th peak at an intermolecular distance, r ≈ 11 Å.

View Article and Find Full Text PDF

Efficient, abundant and low-cost catalysts for the oxygen evolution reaction (OER) are required for energy conversion and storage. In this study, a doping-etching route has been developed to access defect rich Fe-Co-Al (Fe-Co-Al-AE) ternary hydroxide nanosheets for superior electrochemical oxygen evolution. After partial etching of Al, ultrathin Fe Co Al -AE electrocatalysts with a rich pore structure are obtained with a shift of the cobalt valence state towards higher valence (Co →Co ), along with a substantial improvement in the catalytic performance.

View Article and Find Full Text PDF

An laboratory-based X-ray Absorption Near Edge Structure (XANES) Spectroscopy set-up is presented, which allows performing long-term experiments on a solid catalyst at relevant reaction conditions of temperature and pressure. Complementary to research performed at synchrotron radiation facilities the approach is showcased for a Co/TiO Fischer-Tropsch Synthesis (FTS) catalyst. Supported cobalt metal nanoparticles next to a (very small) fraction of cobalt(II) titanate, which is an inactive phase for FTS, were detected, with no signs of re-oxidation of the supported cobalt metal nanoparticles during FTS at 523 K, 5 bar and 200 h, indicating that cobalt metal is maintained as the main active phase during FTS.

View Article and Find Full Text PDF

We present a low-cost laboratory X-ray absorption spectrometer that uses a conventional X-ray tube source and bent Johann-type crystal monochromators. The instrument is designed for X-ray absorption spectroscopy studies in the 4-20 keV range which covers most K edges of 3d transition metals and L edges of 5d transition metals and actinides. The energy resolution is typically in the range of 1-5 eV at 10 keV depending on the crystal analyser and the Bragg angle.

View Article and Find Full Text PDF

The Li 1s core excitation spectra in LiH was studied by means of x-ray Raman scattering (XRS) spectroscopy in a wide range of momentum transfers q. The analysis of the near-edge region of the measured spectra in combination with q-dependent ab initio calculations of XRS spectra based on the Bethe-Salpeter equation (BSE) reveals that the prominent peak at the excitation onset arises from two main contributions, namely a pre-edge peak associated to a p-type core exciton and strong transitions to empty states near the bottom of the conduction band, which is in contrast to previous experimental studies that attributed that feature to a single excitonic peak. The p-like angular symmetry of the core exciton is supported by BSE calculations of the relative contributions to the XRS spectra from monopole and dipole transitions and by the observed decrease of its normalised intensity for increasing momentum transfers.

View Article and Find Full Text PDF
Article Synopsis
  • An end-station for resonant inelastic X-ray scattering and X-ray emission spectroscopy is set up at ESRF’s beamline ID20, featuring a spectrometer with five crystal analysers in Rowland geometry.
  • The spectrometer is designed for high-energy-resolution applications, allowing for advanced studies like high-energy-resolution fluorescence detected X-ray absorption spectroscopy.
  • It also supports non-resonant inelastic X-ray scattering for investigating valence electron excitations in solid materials.
View Article and Find Full Text PDF

A mesoporous MnCo O electrode material is made for bifunctional oxygen electrocatalysis. The MnCo O exhibits both Co O -like activity for oxygen evolution reaction (OER) and Mn O -like performance for oxygen reduction reaction (ORR). The potential difference between the ORR and OER of MnCo O is as low as 0.

View Article and Find Full Text PDF