Publications by authors named "Huosong Xia"

Market uncertainty greatly interferes with the decisions and plans of market participants, thus increasing the risk of decision-making, leading to compromised interests of decision-makers. Cotton price index (hereinafter referred to as cotton price) volatility is highly noisy, nonlinear, and stochastic and is susceptible to supply and demand, climate, substitutes, and other policy factors, which are subject to large uncertainties. To reduce decision risk and provide decision support for policymakers, this article integrates 13 factors affecting cotton price index volatility based on existing research and further divides them into transaction data and interaction data.

View Article and Find Full Text PDF

Central banks worldwide have started researching and developing central bank digital currencies (CBDCs). In the digital economy context, concerns regarding the integrity, competition, and privacy of CBDC systems have also gradually emerged. Against this backdrop, this study aims to evaluate users' willingness to use China's digital currency electronic payment (DCEP) system, a digital payment and processing network, and its influencing factors by comprehensively considering and comparing the characteristics of cash and third-party payment services.

View Article and Find Full Text PDF

The paper examines whether the structure of the risk factor disclosure in an IPO prospectus helps explain the cross-section of first-day returns in a sample of Chinese initial public offerings. This paper analyzes the semantics and content of risk disclosure based on an unsupervised machine learning algorithm. From both long-term and short-term perspectives, this paper explores how the information effect and risk effect of risk disclosure play their respective roles.

View Article and Find Full Text PDF

Based on complex adaptive system theory and information theory for investigating heterogeneous situations, this paper develops an outlier knowledge management framework based on three aspects-dimension, object, and situation-for dealing with extreme public health events. In the context of the COVID-19 pandemic, we apply advanced natural language processing (NLP) technology to conduct data mining and feature extraction on the microblog data from the Wuhan area and the imported case province (Henan Province) during the high and median operating periods of the epidemic. Our experiment indicates that the semantic and sentiment vocabulary of words, the sentiment curve, and the portrait of patients seeking help were all heterogeneous in the context of COVID-19.

View Article and Find Full Text PDF