Skeletal editing of N-heterocycles has recently received considerable attention, and the introduction of boron atom into heterocycles often results in positive property changes. However, direct enlargement of N-heterocycles through boron atom insertion is rarely reported in the literature. Here, we report a N-heterocyclic editing reaction through the combination boron atom insertion and C-H borylation, accessing the fused-BN-heterocycles.
View Article and Find Full Text PDFAn economical and efficient protocol for the direct construction of amino skipped diynes through the Cu(I)-catalyzed reaction of enaminones and terminal alkynes has been described. Different kinds of symmetrical and asymmetrical 3-amino diynes could be obtained in up to 83% yield through a one-pot reaction under mild conditions.
View Article and Find Full Text PDFStatistical experimental designs provided by statistical analysis system (SAS) software were applied to optimize the fermentation medium composition for the production of atrazine-degrading Acinetobacter sp. DNS(32) in shake-flask cultures. A "Plackett-Burman Design" was employed to evaluate the effects of different components in the medium.
View Article and Find Full Text PDFFEMS Microbiol Lett
September 2012
Bacteria are present extensively in the environment. Investigation of their antioxidant properties will be useful for further study on atrazine stress tolerance of bacteria and the defense mechanism of antioxidant enzymes against atrazine or other triazine herbicides. Superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST) and total antioxidant capacity (T-AOC) from one Gram-negative representative strain Escherichia coli K12 and one Gram-positive representative strain Bacillus subtilis B19, respectively, were tested for response to atrazine stress.
View Article and Find Full Text PDFRhodobacter sphaeroides W16 and Acinetobacter lwoffii DNS32 which were isolated from soil in cold area subjected to a long-term atrazine application in Heilongjiang Province (China) can degrade atrazine efficiently. The investigation of their antioxidant properties will be useful for bioremediation and engineering applications of atrazine-degrading bacteria. Superoxide dismutase (SOD) and catalase (CAT) from two atrazine-degrading bacteria and one non-atrazine-degrading bacterium were tested for response to the oxidative stress caused by atrazine.
View Article and Find Full Text PDF