Rice root system plays a crucial role in plant adaptation under adverse conditions, particularly drought stress. However, the regulatory gene networks that govern rice root development during stress exposure remain largely unexplored. In this study, we applied a QTL sequencing method to identify QTL/gene controlling the crown root development under Jasmonic acid simulation using the Bulk-segregant analysis.
View Article and Find Full Text PDFRice is an essential but highly stress-susceptible crop, whose root system plays an important role in plant development and stress adaptation. The rice root system architecture is controlled by gene regulatory networks involving different phytohormones including auxin, jasmonate, and gibberellin. Gibberellin is generally known as a molecular clock that interacts with different pathways to regulate root meristem development.
View Article and Find Full Text PDFRice (Oryza sativa L.) is one of the most important dietary carbohydrate sources for half of the world's population. However, it is not well adapted to environmental stress conditions, necessitating to create new and improved varieties to help ensure sufficient rice production in the face of rising populations and shrinking arable land.
View Article and Find Full Text PDFIn rice (Oryza sativa L.), rice bran contains valuable nutritional constituents, such as high unsaturated fat content, tocotrienols, inositol, γ-oryzanol, and phytosterols, all of which are of nutritional and pharmaceuticals interest. There is now a rising market demand for rice bran oil, which makes research into their content and fatty acid profile an area of interest.
View Article and Find Full Text PDFIn rice (Oryza sativa L.), crown roots (CRs) have many important roles in processes such as root system expansion, water and mineral uptake, and adaptation to environmental stresses. Phytohormones such as auxin, cytokinin, and ethylene are known to control CR initiation and development in rice.
View Article and Find Full Text PDFPlant J
July 2022
In cereals, the root system is mainly composed of post-embryonic shoot-borne roots, named crown roots. The CROWN ROOTLESS1 (CRL1) transcription factor, belonging to the ASYMMETRIC LEAVES2-LIKE/LATERAL ORGAN BOUNDARIES DOMAIN (ASL/LBD) family, is a key regulator of crown root initiation in rice (Oryza sativa). Here, we show that CRL1 can bind, both in vitro and in vivo, not only the LBD-box, a DNA sequence recognized by several ASL/LBD transcription factors, but also another not previously identified DNA motif that was named CRL1-box.
View Article and Find Full Text PDFPhosphorus is an essential nutrient for plants that is often in short supply. In rice (Oryza sativa L.), inorganic phosphate (P) deficiency leads to various physiological disorders that consequently affect plant productivity.
View Article and Find Full Text PDFThe crucial role of phosphate (Pi) for plant alongside the expected depletion of non-renewable phosphate rock have created an urgent need for phosphate-efficient rice varieties. In this study, 157 greenhouse-grown Vietnamese rice landraces were treated under Pi-deficient conditions to discover the genotypic variation among biochemical traits, including relative efficiency of phosphorus use (REP), relative root to shoot weight ratio (RRSR), relative physiological phosphate use efficiency (RPPUE), and relative phosphate uptake efficiency (RPUpE). Plants were grown in Yoshida nutrient media with either a full (320 μM) or a low Pi supply (10 μM) over six weeks.
View Article and Find Full Text PDFRice is one of the most important food crops worldwide, as well as the model plant in molecular studies on the cereals group. Many different biotic and abiotic agents often limit rice production and threaten food security. Understanding the molecular mechanism, by which the rice plant reacts and resists these constraints, is the key to improving rice production to meet the demand of an increasing population.
View Article and Find Full Text PDFBackground: Due to their sessile life style, plant survival is dependent on the ability to build up fast and highly adapted responses to environmental stresses by modulating defense response and organ growth. The phytohormone jasmonate plays an essential role in regulating these plant responses to stress.
Results: To assess variation of plant growth responses and identify genetic determinants associated to JA treatment, we conducted a genome-wide association study (GWAS) using an original panel of Vietnamese rice accessions.