Gastric cancer (GC) is one of the major causes of cancer deaths with 5-year survival ratio of 20%. RNU12 is one of long noncoding RNAs (lncRNAs) regulating the tumor progression. However, how RNU12 affecting GC is not clear.
View Article and Find Full Text PDFAntioxidant enzymes fused with cell-penetrating peptides could enter cells and protect cells from irradiation damage. However, the unselective transmembrane ability of cell-penetrating peptide may also bring antioxidant enzymes into tumor cells, thus protecting tumor cells and consequently reducing the efficacy of radiotherapy. There are active matrix metalloproteinase (MMP)-2 or MMP-9 in most tumor cellular microenvironments.
View Article and Find Full Text PDFAnnexin A2 (ANXA2) has been found to be involved in cancer proliferation, metastasis and prognosis; however, its exact role in nasopharyngeal carcinoma (NPC) radioresistance remains unknown. We found that ANXA2 expression was correlated with prognosis in NPC patients, and longer overall survival in NPC patients with low ANXA2 expression than those with high ANXA2 expression. ANXA2 knockdown increased the radiosensitivity in radioresistant NPC cells, and ANXA2 overexpression decreased the radiosensitivity in NPC cells.
View Article and Find Full Text PDFBackground: Paraspeckle component 1 (PSPC1) is overexpressed in various cancer and correlated with poor survival in the patients. However, little is known about its expression and role in the progression of nasopharyngeal carcinomas (NPC). The purpose of this study is to examine PSPC1 expression in NPC and explore its role in clinical prognosis of radiation therapy.
View Article and Find Full Text PDFStanniocalcin 2 (STC2) expression is upregulated under multiple stress conditions including hypoxia, nutrient starvation and radiation. Overexpression of STC2 correlates with tumor progression and poor prognosis. We previously demonstrated that overexpression of STC2 in nasopharyngeal carcinomas (NPC) positively correlates with radiation resistance and tumor metastasis, two major clinical obstacles to the improvement of NPC management.
View Article and Find Full Text PDFSheng Wu Gong Cheng Xue Bao
January 2019
Two proteins of similar molecular weight (named as ASPR-C-1 and ASPR-C-2) from the crude drug of Angelica sinensis were purified and characterized by 80% ammonium sulfate precipitation, Sephadex G-50 gel filtration chromatography, and DEAE-Sepharose anion exchange chromatography. The molecular weight of ASPR-C-1 and ASPR-C-2 on SDS-PAGE was 17.33 kDa and 17.
View Article and Find Full Text PDFBackground/aims: Nasopharyngeal carcinoma (NPC) is rare worldwide but remains highly prevalent in endemic regions, notably in southern China. Radiotherapy remains the treatment of choice for NPC, but radioresistance has been identified as a major cause of therapeutic failure. The Wnt/β-catenin signaling has been found to be involved in NPC radioresistance; however, the effect of β-catenin overexpression on radioresistance remains unknown in NPC until now.
View Article and Find Full Text PDFIn this study, two pathogenesis-related (PR) class 10 protein isoforms, ASPR-1 and ASPR-2, were purified from fresh roots of the Chinese medicinal plant Angelica sinensis (A. sinensis) using 80% ammonium sulfate precipitation, Sephadex G50 gel filtration chromatography, and DEAE-Sepharose ion-exchange chromatography. The molecular masses of ASPR-1 and ASPR-2 were estimated to be 16.
View Article and Find Full Text PDFGST-TAT-SOD, a cell-permeable bifunctional antioxidant enzyme, is a potential selective radioprotector. This study aimed to investigate the cytoprotective activity of GST-TAT-SOD against cisplatin-induced damage. The current study showed that cisplatin induced the formation of reactive oxygen species in normal L-02 cells.
View Article and Find Full Text PDFSheng Wu Gong Cheng Xue Bao
May 2017
The fusion of cell permeable peptide TAT and bifunctional antioxidant enzymes, GST (Glutathione sulfur transferase)-TAT-SOD1 (Cu, Zn superoxide dismutase), is an intracellular superoxide scavenger. Compared with SOD1-TAT, GST-TAT-SOD1 has better protective effect on oxidative damage but less transduction efficiency. A novel cell permeable bifunctional antioxidant enzymes with the fusion of GST, SOD1 and polyarginine R9 was constructed for higher transduction efficiency.
View Article and Find Full Text PDFSheng Wu Gong Cheng Xue Bao
July 2017
Superoxide dismutase (SOD) family is necessary to protect cells from the toxicity of reactive oxygen species produced during normal metabolism. Among SODs, manganese-containing superoxide dismutase (Mn-SOD, SOD2) is the most important one. The DNA fragment containing the full nucleotide of full-length human SOD2 was synthesized and inserted into the prokaryotic expression vector pGEX-4T-1 with tag GST.
View Article and Find Full Text PDFGST-TAT-SOD was the fusion of superoxide dismutase (SOD), cell-permeable peptide TAT, and glutathione-S-transferase (GST). It was proved to be a potential selective radioprotector in vitro in our previous work. This study evaluated the in vivo radioprotective activity of GST-TAT-SOD against whole-body irradiation.
View Article and Find Full Text PDFSuperoxide dismutase (SOD) fusion of TAT was proved to be radioprotective in our previous work. On that basis, a bifunctional recombinant protein which was the fusion of glutathione S-transferase (GST), SOD, and TAT was constructed and named GST-TAT-SOD. Herein we report the investigation of the cytotoxicity, cell-penetrating activity, and in vitro radioprotective effect of GST-TAT-SOD compared with wild SOD, single-function recombinant protein SOD-TAT, and amifostine.
View Article and Find Full Text PDFAims: Radiation-induced lung injury is one of the limiting factors for radiation therapy. SOD-TAT, a fusion protein of HIV-1 Tat protein transduction domain and hCuZn-superoxide dismutase (SOD), has been proved to be effective in preventing and treating the damage of the skin of guinea pigs by UVB radiation. In this study, we demonstrated SOD-TAT's radioprotective effects on lung injury in irradiated mice.
View Article and Find Full Text PDF