Publications by authors named "Hunziker E"

The human hand is traumatized more frequently than any other bodily part. Trauma and pathological processes (e.g.

View Article and Find Full Text PDF

The inner surface layer of human joints, the synovium, is a source of stem cells for the repair of articular cartilage defects. We investigated the potential of the normal human synovium to form novel cartilage and compared its chondrogenic capacity with that of two patient groups suffering from major joint diseases: young adults with femoro-acetabular impingement syndromes of the hip (FAI), and elderly individuals with osteoarthritic degeneration of the knee (OA). Synovial membrane explants of these three patient groups were induced in vitro to undergo chondrogenesis by growth factors: bone morphogenetic protein-2 (BMP-2) alone, transforming growth factor-β1 (TGF-β1) alone, or a combination of these two.

View Article and Find Full Text PDF

Introduction: Bone typing is crucial to enable the choice of a suitable implant, the surgical technique, and the evaluation of the clinical outcome. Currently, bone typing is assessed subjectively by the surgeon.

Objective: The aim of this study is to establish an automatic quantification method to determine local bone types by the use of cone-beam computed tomography (CBCT) for an observer-independent approach.

View Article and Find Full Text PDF

Miniscrew implants (MSIs) have been widely used as temporary anchorage devices in orthodontic clinics. However, one of their major limitations is the relatively high failure rate. We hypothesize that a biomimetic calcium phosphate (BioCaP) coating layer on mini-pin implants might be able to accelerate the osseointegration, and can be a carrier for biological agents.

View Article and Find Full Text PDF

The autologous synovium is a potential tissue source for local induction of chondrogenesis by tissue engineering approaches to repair articular cartilage defects that occur in osteoarthritis. It was the aim of the present study to ascertain whether the aging of human osteoarthritic patients compromises the chondrogenic potential of their knee-joint synovium and the structural and metabolic stability of the transformed tissue. The patients were allocated to one of the following two age categories: 54-65 years and 66-86 years ( = 7-11 donors per time point and experimental group; total number of donors: 64).

View Article and Find Full Text PDF

The aim of the present study was to investigate in vivo whether bone morphogenetic protein-7 (BMP-7) was able to promote and accelerate dental implant healing at a low dose in an osteopenic environment by using a delayed drug-release system. Skeletally mature Chinese goats, having physiologically osteopenic (osteoporotic-like) facial bones, served as an animal model. Dental implants were provided with a delayed-release drug-delivery system and BMP-7 was applied at three different dosages.

View Article and Find Full Text PDF

This preliminary study investigates the differences between experimental periodontitis and peri-implantitis in a dog model, with a focus on the histopathology, inflammatory responses, and specific immunoregulatory activities driven by Th1/Th2-positive cells. Twelve dental implants were inserted into the edentulated posterior mandibles of 6 beagle dogs and were given 12 weeks for osseointegration. Experimental peri-implantitis and periodontitis (first mandible molar) were then induced using cotton-floss ligatures.

View Article and Find Full Text PDF

Implant stability quotients (ISQ values) are obtained in dental clinical practice on a non-invasive basis by resonance frequency measurement rapidly after surgical placement of implants. The ISQ-values are used as indicator for mechanical implant stability, and are believed to have predictive power for clinical outcome. It is the aim of this review to provide a synopsis of all factors described in the literature that influence ISQ measurements by performing an exhaustive literature review; moreover, this review aims at elucidating the key factors relevant for a rapid clinical predictive assessment.

View Article and Find Full Text PDF

In dental clinical practice, systemic steroids are often applied at the end of implant surgeries to reduce postsurgical inflammation (tissue swelling, etc.) and to reduce patient discomfort. However, the use of systemic steroids is associated with generalized catabolic effects and with a temporarily reduced immunological competence.

View Article and Find Full Text PDF

Cartilage injury, such as full-thickness lesions, predisposes patients to the premature development of osteoarthritis, a degenerative joint disease. While surgical management of cartilage lesions has improved, long-term clinical efficacy has stagnated, owing to the lack of hyaline cartilage regeneration and inadequate graft-host integration. This study tests the hypothesis that integration of cartilage grafts with native cartilage can be improved by enhancing the migration of chondrocytes across the graft-host interface via the release of chemotactic factor from a degradable polymeric mesh.

View Article and Find Full Text PDF

Objectives: (1) To determine whether the biocompatibility of coralline hydroxyapatite (CHA) granules could be improved by using an octacalcium phosphate (OCP) coating layer, and/or functionalized with bone morphogenetic protein 2 (BMP-2), and (2) to investigate if BMP-2 incorporated into this coating is able to enhance its osteoinductive efficiency, in comparison to its surface-adsorbed delivery mode.

Methods: CHA granules (0.25 g per sample) bearing a coating-incorporated depot of BMP-2 (20 μg/sample) together with the controls (CHA bearing an adsorbed depot of BMP-2; CHA granules with an OCP coating without BMP-2; pure CHA granules) were implanted subcutaneously in rats (n = 6 animals per group).

View Article and Find Full Text PDF

Implantation of allograft tissues has massively grown over the last years, especially in the fields related to sports medicine. Beside the fact that often no autograft option exists, autograft related disadvantages as donor-site morbidity and prolonged operative time are drastically reduced with allograft tissues. Despite the well documented clinical success for bone allograft procedures, advances in tissue engineering raised the interest in meniscus, osteochondral and ligament/tendon allografts.

View Article and Find Full Text PDF

Purpose: To test the hypothesis if a novel single-chamber experimental dental implant allows in vivo the quantitative assessment of osseointegration over time and as a function of different surface properties (physical, chemical, geometric, biologic [osteoconductive or osteoinductive]) in a biologically unfavorable environment (local osteoporosis).

Materials And Methods: Three prototypes of a novel experimental implant with different chamber sizes (small, medium, and large) were compared with each other to find out the minimum size of bone chambers needed to allow a discriminative quantification of osseointegration over time. For the comparison of low and high surface osteoconductivity properties, conventional sandblasted, acid-etched chamber surfaces (low surface osteoconductivity) were compared with biomimetically (calcium phosphate) coated ones (high surface osteoconductivity).

View Article and Find Full Text PDF

The disk of hyaline cartilage that is interposed between the epiphysis and the metaphysis of each of the long bones is responsible for its elongation, and, thus, when the lower limbs are concerned, for increases in bodily height. This so-called growth plate is avascular, aneural, and alymphatic. It consists solely of chondrocytes and an extracellular matrix which the cells elaborate.

View Article and Find Full Text PDF

Biomimetically deposited calcium phosphate-based coatings of prostheses can serve as a vehicle for the targeted delivery of growth factors to the local implant environment. Based on indirect evidence in previous studies we hypothesize that such agents are liberated gradually from the coating via a cell-mediated degradation. In the present study, we tested this hypothesis by investigating the release mechanism and its kinetics by use of a radiolabeled osteogenic agent ( I-BMP-2) under conditions in which native cell populations with a coating-degradative potential were either absent or present.

View Article and Find Full Text PDF

(1) Background: We tested the hypothesis that hyaluronic acid (HA) can significantly promote the osteogenic potential of BMP-2/ACS (absorbable collagen sponge), an efficacious product to heal large oral bone defects, thereby allowing its use at lower dosages and, thus, reducing its side-effects due to the unphysiologically-high doses of BMP-2; (2) Methods: In a subcutaneous bone induction model in rats, we first sorted out the optimal HA-polymer size and concentration with micro CT. Thereafter, we histomorphometrically quantified the effect of HA on new bone formation, total construct volume, and densities of blood vessels and macrophages in ACS with 5, 10, and 20 μg of BMP-2; (3) Results: The screening experiments revealed that the 100 µg/mL HA polymer of 48 kDa molecular weight could yield the highest new bone formation. Eighteen days post-surgery, HA could significantly enhance the total volume of newly-formed bone by approximately 100%, and also the total construct volume in the 10 μg BMP-2 group.

View Article and Find Full Text PDF

Absorbed collagen sponge (ACS)/bone morphogenetic protein-2 (BMP-2) are widely used in clinical practise for bone regeneration. However, the application of this product was found to be associated with a significant pro-inflammatory response, particularly in the early phase after implantation. This study aimed to clarify if the pro-inflammatory activities, associated with BMP-2 added to ACS, were related to the physical state of the carrier itself, i.

View Article and Find Full Text PDF

In clinical orthopaedics, total joint replacements and spinal fusions are routine undertakings. Many of the implicated patients suffer from osteoporosis, severe arthrosis or osteopaenia. In individuals thus afflicted, the bony bed lacks the mechanical stability that is a requisite for a firm anchorage of the implant and its functional competence.

View Article and Find Full Text PDF

Osteoarthritis (OA) is a degenerative joint condition characterized by painful cartilage lesions that impair joint mobility. Current treatments such as lavage, microfracture, and osteochondral implantation fail to integrate newly formed tissue with host tissues and establish a stable transition to subchondral bone. Similarly, tissue-engineered grafts that facilitate cartilage and bone regeneration are challenged by how to integrate the graft seamlessly with surrounding host cartilage and/or bone.

View Article and Find Full Text PDF

Meniscal injuries can occur secondary to trauma or be instigated by the changes in knee-joint function that are associated with aging, osteo- and rheumatoid arthritis, disturbances in gait, and obesity. Sixty percent of persons over 50 years of age manifest signs of meniscal pathology. The surgical and arthroscopic measures that are currently implemented to treat meniscal deficiencies bring only transient relief from pain and effect but a temporary improvement in joint function.

View Article and Find Full Text PDF

Introduction: The transcription factor activating enhancer binding protein 2 epsilon (AP-2ε) was recently shown to be expressed during chondrogenesis as well as in articular chondrocytes of humans and mice. Furthermore, expression of AP-2ε was found to be upregulated in affected cartilage of patients with osteoarthritis (OA). Despite these findings, adult mice deficient for AP-2ε (Tfap2e(-/-)) do not exhibit an obviously abnormal cartilaginous phenotype.

View Article and Find Full Text PDF

The articular cartilage layer of synovial joints is commonly lesioned by trauma or by a degenerative joint disease. Attempts to repair the damage frequently involve the performance of autologous chondrocyte implantation (ACI). Healthy cartilage must be first removed from the joint, and then, on a separate occasion, following the isolation of the chondrocytes and their expansion in vitro, implanted within the lesion.

View Article and Find Full Text PDF

Objective: The repair of cartilaginous lesions within synovial joints is still an unresolved and weighty clinical problem. Although research activity in this area has been indefatigably sustained, no significant progress has been made during the past decade. The aim of this educational review is to heighten the awareness amongst students and scientists of the basic issues that must be tackled and resolved before we can hope to escape from the whirlpool of stagnation into which we have fallen: cartilage repair redivivus!

Design: Articular-cartilage lesions may be induced traumatically (e.

View Article and Find Full Text PDF

No single processing technique is capable of optimally preserving each and all of the structural entities of cartilaginous tissue. Hence, the choice of methodology must necessarily be governed by the nature of the component that is targeted for analysis, for example, fibrillar collagens or proteoglycans within the extracellular matrix, or the chondrocytes themselves. This article affords an insight into the pitfalls that are to be encountered when implementing the available techniques and how best to circumvent them.

View Article and Find Full Text PDF