Publications by authors named "Hunyoung Bark"

The substitutional doping method is ideally suited to generating doped two-dimensional (2D) materials for practical device applications as it does not damage or destabilize such materials. However, recently reported substitutional doping techniques for 2D materials have given rise to discontinuities and low uniformities, which hamper the extension of such techniques to large-scale production. In the current work, we demonstrated uniform substitutional doping of monolayer MoS in a 2 in.

View Article and Find Full Text PDF

Direct contacts of a metal with atomically thin two-dimensional (2D) transition metal dichalcogenide (TMDC) semiconductors have been found to suppress device performance by producing a high contact resistance. NbS is a 2D TMDC and a conductor. It is expected to form ohmic contacts with 2D semiconductors because of its high work function and the van der Waals interface it forms with the semiconductor, with such an interface resulting in weak Fermi level pinning.

View Article and Find Full Text PDF

Atomically thin binary two-dimensional (2D) semiconductors exhibit diverse physical properties depending on their composition, structure, and thickness. By adding another element in these materials, which will lead to formation of ternary 2D materials, the property and structure would greatly change and significantly expanded applications could be explored. In this work, we report structural and optical properties of atomically thin chromium thiophosphate (CrPS), a ternary antiferromagnetic semiconductor.

View Article and Find Full Text PDF

Monolayer MoS2 nanosheets are potentially useful in optoelectronics, photoelectronics, and nanoelectronics due to their flexibility, mechanical strength, and direct band gap of 1.89 eV. Experimentalists have studied the synthesis of MoS2 using chemical vapor deposition (CVD) methods in an effort to fabricate wafer-scale nanofilms with a high uniformity and continuity for practical electronic applications.

View Article and Find Full Text PDF

By plasma-enhanced chemical vapor deposition, a molybdenum disulfide (MoS2 ) thin film is synthesized directly on a wafer-scale plastic substrate at below 300 °C. The carrier mobility of the films is 3.74 cm(2) V(-1) s(-1) .

View Article and Find Full Text PDF

We describe a method for synthesizing large-area and uniform molybdenum disulfide films, with control over the layer number, on insulating substrates using a gas phase sulfuric precursor (H2S) and a molybdenum metal source. The metal layer thickness was varied to effectively control the number of layers (2 to 12) present in the synthesized film. The films were grown on wafer-scale Si/SiO2 or quartz substrates and displayed excellent uniformity and a high crystallinity over the entire area.

View Article and Find Full Text PDF