Publications by authors named "Huntington E"

Measurement-based quantum computation with optical time-domain multiplexing is a promising method to realize a quantum computer from the viewpoint of scalability. Fault tolerance and universality are also realizable by preparing appropriate resource quantum states and electro-optical feedforward that is altered based on measurement results. While linear feedforward has been realized and become a common experimental technique, nonlinear feedforward was unrealized until now.

View Article and Find Full Text PDF

Quantum correlation often refers to correlations exhibited by two or more local subsystems under a suitable measurement. These correlations are beyond the framework of classical statistics and the associated classical probability distribution. Quantum entanglement is the most well-known of such correlations and plays an important role in quantum information theory.

View Article and Find Full Text PDF

Squeezed states are an interesting class of quantum states that have numerous applications. This work presents the design, characterization, and operation of a bow-tie optical parametric amplifier (OPA) for squeezed vacuum generation. We report the high duty cycle operation and long-term stability of the system that makes it suitable for post-selection based continuous-variable quantum information protocols, cluster-state quantum computing, quantum metrology, and potentially gravitational wave detectors.

View Article and Find Full Text PDF

In this article, we present a novel spectroscopy technique that improves the signal-to-shot-noise ratio without the need to increase the laser power. Detrimental effects by technical noise sources are avoided by frequency-modulation techniques (frequency up-shifting). Superimposing the signal on non-classical states of light leads to a reduced quantum noise floor.

View Article and Find Full Text PDF
Article Synopsis
  • * Our method involves performing quantum tomography on a two-mode detector made of superconducting nanowire single photon detectors, using coherent states as probe states for accurate preparation.
  • * The results show that even separable states can effectively characterize an entangled detector, confirming that specific conditions allow the detector to produce entangled measurements, which is vital for advancements in quantum information technology.
View Article and Find Full Text PDF

Integrated quantum photonics provides a scalable platform for the generation, manipulation, and detection of optical quantum states by confining light inside miniaturized waveguide circuits. Here, we show the generation, manipulation, and interferometric stage of homodyne detection of nonclassical light on a single device, a key step toward a fully integrated approach to quantum information with continuous variables. We use a dynamically reconfigurable lithium niobate waveguide network to generate and characterize squeezed vacuum and two-mode entangled states, key resources for several quantum communication and computing protocols.

View Article and Find Full Text PDF

We propose a method to subtract a photon from a double sideband mode of continuous-wave light. The central idea is to use phase modulation as a frequency sideband beam splitter in the heralding photon subtraction scheme, where a small portion of the sideband mode is down-converted to 0 Hz to provide a trigger photon. An optical cat state is created by applying the proposed method to a squeezed state at 500 MHz sideband, which is generated by an optical parametric oscillator.

View Article and Find Full Text PDF

A Bell inequality is a fundamental test to rule out local hidden variable model descriptions of correlations between two physically separated systems. There have been a number of experiments in which a Bell inequality has been violated using discrete-variable systems. We demonstrate a violation of Bell's inequality using continuous variable quadrature measurements.

View Article and Find Full Text PDF

Precise knowledge of an optical device's frequency response is crucial for it to be useful in most applications. Traditional methods for determining the frequency response of an optical system (e.g.

View Article and Find Full Text PDF

We propose and demonstrate a pump-phase locking technique that makes use of weak pump depletion (WPD) - an unavoidable effect that is usually neglected - in a sub-threshold optical parametric oscillator (OPO). We show that the phase difference between seed and pump beam is imprinted on both light fields by the non-linear interaction in the crystal and can be read out without disturbing the squeezed output. In our experimental setup we observe squeezing levels of 1.

View Article and Find Full Text PDF

We experimentally demonstrate optomechanical motion and force measurements near the quantum precision limits set by the quantum Cramér-Rao bounds. Optical beams in coherent and phase-squeezed states are used to measure the motion of a mirror under an external stochastic force. Utilizing optical phase tracking and quantum smoothing techniques, we achieve position, momentum, and force estimation accuracies close to the quantum Cramér-Rao bounds with the coherent state, while the estimation using squeezed states shows clear quantum enhancements beyond the coherent-state bounds.

View Article and Find Full Text PDF

Tracking a randomly varying optical phase is a key task in metrology, with applications in optical communication. The best precision for optical-phase tracking has until now been limited by the quantum vacuum fluctuations of coherent light. Here, we surpass this coherent-state limit by using a continuous-wave beam in a phase-squeezed quantum state.

View Article and Find Full Text PDF

We report on the experimental quantum teleportation of strongly nonclassical wave packets of light. To perform this full quantum operation while preserving and retrieving the fragile nonclassicality of the input state, we have developed a broadband, zero-dispersion teleportation apparatus that works in conjunction with time-resolved state preparation equipment. Our approach brings within experimental reach a whole new set of hybrid protocols involving discrete- and continuous-variable techniques in quantum information processing for optical sciences.

View Article and Find Full Text PDF

Quantum parameter estimation has many applications, from gravitational wave detection to quantum key distribution. The most commonly used technique for this type of estimation is quantum filtering, using only past observations. We present the first experimental demonstration of quantum smoothing, a time-symmetric technique that uses past and future observations, for quantum parameter estimation.

View Article and Find Full Text PDF

The aims of this study were to test the hypothesis that flossing after brushing with a fluoridated toothpaste may lower salivary fluoride (F), and to evaluate the consequence of subsequent F mouthwash use. Twenty adults used 3 oral hygiene regimes in a randomised order: A, brushing with an NaF toothpaste; B, as A but followed by professional flossing; C, as B followed by rinsing with an NaF mouthwash. Saliva samples were collected up to 120 min after each regime and analysed for F.

View Article and Find Full Text PDF

We report on the successful implementation of an approach to locking the frequencies of an optical parametric oscillator (OPO)-based squeezed-vacuum source and its driving laser. The technique allows the simultaneous measurement of the phase shifts induced by a cavity, which may be used for the purposes of frequency locking, as well as the simultaneous measurement of the sub-quantum-noise-limited (sub-QNL) phase quadrature output of the OPO. The homodyne locking technique is cheap, easy to implement, and has the distinct advantage that subsequent homodyne measurements are automatically phase locked.

View Article and Find Full Text PDF

For some nonlinear systems the performance can improve with an increasing noise level. Such noise-induced improvement in static nonlinearities is of great interest for practical applications since many systems can be modeled in that way (e.g.

View Article and Find Full Text PDF

Photon-number resolving detectors are a fundamental building-block of optical quantum information processing protocols. A loop detector, combined with appropriate statistical processing, can be used to convert a binary on/off photon counter into a photon-number-resolving detector. Here we describe the idea of a signature of photon-counts, which may be used to more robustly reconstruct the photon number distribution of a quantum state.

View Article and Find Full Text PDF

A hybrid electronic/optical system for synchronizing a chaotic receiver to a chaotic transmitter has been demonstrated. The chaotic signal is generated electronically and injected, in addition to a constant bias current, to a semiconductor laser to produce an optical carrier for transmission. The optical chaotic carrier is photodetected to regenerate an electronic signal for synchronization in a matched electronic receiver The system has been successfully used for the transmission and recovery of a chaos masked message that is added to the chaotic optical carrier.

View Article and Find Full Text PDF

It is possible to estimate the time-domain Green's function of a channel based on measurements of ambient noise by sensors at either end of the channel. This paper presents theoretical results for the impact of filtering on this problem. These results lead to the development of two experimental rules-of-thumb.

View Article and Find Full Text PDF

We present measurements of the power noise that is due to optical amplification in a laser-diode-pumped Nd:YAG free-space traveling-wave linear amplifier in a master-oscillator-power-amplifier configuration. The quantum noise behavior of the optical amplifier was demonstrated by use of InGaAs photodetectors in a balanced detection configuration, at a total photocurrent of 100 mA and in a frequency band from 6.25 to 15.

View Article and Find Full Text PDF

We present a noiseless optical amplifier comprising a signal-amplifying feed-forward loop and a power-amplifying injection-locked laser. We demonstrate that the signal amplifier can attain a signal-transfer coefficient limited solely by the quantum efficiency of our in-loop photodetector and that we can independently amplify the optical power while leaving the normalized intensity-noise spectral density of the input field unchanged.

View Article and Find Full Text PDF

We present a method for synchronization of chaos generators based on transmission of an analog chaotic waveform in a digital form. Experimental comparisons between digital and analog transmission of chaos from a delayed differential feedback system are performed. Synchronization is demonstrated to be between 18 and 39 dB (or equivalently 63 to 7943 times) better for digital transmission than analog.

View Article and Find Full Text PDF

We experimentally demonstrate the generation of optical squeezing at multiple longitudinal modes and transverse Hermite-Gauss modes of an optical parametric amplifier. We present measurements of approximately 3 dB squeezing at baseband, 1.7 GHz, 3.

View Article and Find Full Text PDF