Publications by authors named "Hunter Sturm"

Screening for novel antibacterial compounds in small molecule libraries has a low success rate. We applied machine learning (ML)-based virtual screening for antibacterial activity and evaluated its predictive power by experimental validation. We first binarized 29,537 compounds according to their growth inhibitory activity (hit rate 0.

View Article and Find Full Text PDF

Motivation: Chemical-genetic interaction profiling is a genetic approach that quantifies the susceptibility of a set of mutants depleted in specific gene product(s) to a set of chemical compounds. With the recent advances in artificial intelligence, chemical-genetic interaction profiles (CGIPs) can be leveraged to predict mechanism of action of compounds. This can be achieved by using machine learning, where the data from a CGIP is fed into the machine learning platform along with the chemical descriptors to develop a chemogenetically trained model.

View Article and Find Full Text PDF