IEEE Trans Biomed Eng
September 2024
Concentric tube robots (CTRs) are well-suited to address the unique challenges of minimally invasive surgical procedures due to their small size and ability to navigate highly constrained environments. However, uncertainties in the manufacturing process can lead to challenges in the transition from simulated designs to physical robots. In this work, we propose an end-to-end design workflow for CTRs that considers the oftenoverlooked impact of manufacturing uncertainty, focusing on two primary sources - tube curvature and diameter.
View Article and Find Full Text PDFCatheters integrated with microcoils for electromagnetic steering under the high, uniform magnetic field within magnetic resonance (MR) scanners (3-7 Tesla) have enabled an alternative approach for active catheter operations. Achieving larger ranges of tip motion for Lorentz force-based steering have previously been dependent on using high power coupled with active cooling, bulkier catheter designs, or introducing additional microcoil sets along the catheter. This work proposes an alternative approach using a heat-mitigated design and actuation strategy for a magnetic resonance imaging (MRI)-driven microcatheter.
View Article and Find Full Text PDFThe application of the Shannon entropy to study the relationship between information and structures has yielded insights into molecular and material systems. However, the difficulty in directly observing and manipulating atoms and molecules hampers the ability of these systems to serve as model systems for further exploring the links between information and structures. Here, we use, as a model experimental system, hundreds of spinning magnetic micro-disks self-organizing at the air-water interface to generate various spatiotemporal patterns with varying degrees of order.
View Article and Find Full Text PDFThe passive, mechanical adaptation of slender, deformable robots to their environment, whether the robot be made of hard materials or soft ones, makes them desirable as tools for medical procedures. Their reduced physical compliance can provide a form of embodied intelligence that allows the natural dynamics of interaction between the robot and its environment to guide the evolution of the combined robot-environment system. To design these systems, the problems of analysis, design optimization, control, and motion planning remain of great importance because, in general, the advantages afforded by increased mechanical compliance must be balanced against penalties such as slower dynamics, increased difficulty in the design of control systems, and greater kinematic uncertainty.
View Article and Find Full Text PDFDeep learning techniques hold promise to develop dense topography reconstruction and pose estimation methods for endoscopic videos. However, currently available datasets do not support effective quantitative benchmarking. In this paper, we introduce a comprehensive endoscopic SLAM dataset consisting of 3D point cloud data for six porcine organs, capsule and standard endoscopy recordings, synthetically generated data as well as clinically in use conventional endoscope recording of the phantom colon with computed tomography(CT) scan ground truth.
View Article and Find Full Text PDFCurrent capsule endoscopes and next-generation robotic capsules for diagnosis and treatment of gastrointestinal diseases are complex cyber-physical platforms that must orchestrate complex software and hardware functions. The desired tasks for these systems include visual localization, depth estimation, 3D mapping, disease detection and segmentation, automated navigation, active control, path realization and optional therapeutic modules such as targeted drug delivery and biopsy sampling. Data-driven algorithms promise to enable many advanced functionalities for capsule endoscopes, but real-world data is challenging to obtain.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2019
Recent research indicates that music-supported therapies may offer unique benefits for rehabilitation of motor function after stroke. We designed an adapted guitar and training task aimed to improve coordination between rhythmic and discrete movements because individuals recovering from stroke have greater difficulty performing discrete vs. rhythmic movements.
View Article and Find Full Text PDFWireless capsule endoscopes have revolutionized diagnostic procedures in the gastrointestinal (GI) tract by minimizing discomfort and trauma. Biopsy procedures, which are often necessary for a confirmed diagnosis of an illness, have been incorporated recently into robotic capsule endoscopes to improve their diagnostic functionality beyond only imaging. However, capsule robots to date have only been able to acquire biopsy samples of superficial tissues of the GI tract, which could generate false-negative diagnostic results if the diseased tissue is under the surface of the GI tract.
View Article and Find Full Text PDFOper Neurosurg (Hagerstown)
February 2017
Background: The recent development of MRI-guided laser-induced thermal therapy (LITT) offers a minimally invasive alternative to craniotomies performed for tumor resection or for amygdalohippocampectomy to control seizure disorders. Current LITT therapies rely on linear stereotactic trajectories that mandate twist-drill entry into the skull and potentially long approaches traversing healthy brain. The use of robotically-driven, telescoping, curved needles has the potential to reduce procedure invasiveness by tailoring trajectories to the curved shape of the ablated structure and by enabling access through natural orifices.
View Article and Find Full Text PDFThis paper presents a miniature wrist that can be integrated into needle-sized surgical instruments. The wrist consists of a nitinol tube with asymmetric cutouts that is actuated by a single tendon to provide high distal curvature. We derive and experimentally validate kinematic and static models for the wrist and describe several prototype wrists, illustrating the straightforward fabrication and scalability of the design.
View Article and Find Full Text PDFIEEE Robot Autom Lett
December 2015
Shape setting Nitinol tubes and wires in a typical laboratory setting for use in superelastic robots is challenging. Obtaining samples that remain superelastic and exhibit desired precurvatures currently requires many iterations, which is time consuming and consumes a substantial amount of Nitinol. To provide a more accurate and reliable method of shape setting, in this paper we propose an electrical technique that uses Joule heating to attain the necessary shape setting temperatures.
View Article and Find Full Text PDFJ Neurol Surg B Skull Base
March 2015
Objectives The purpose of this study is to experimentally evaluate the use of concentric tube continuum robots in endonasal skull base tumor removal. This new type of surgical robot offers many advantages over existing straight and rigid surgical tools including added dexterity, the ability to scale movements, and the ability to rotate the end effector while leaving the robot fixed in space. In this study, a concentric tube continuum robot was used to remove simulated pituitary tumors from a skull phantom.
View Article and Find Full Text PDFIEEE Trans Robot
February 2016
Concentric tube robots are needle-sized manipulators which have been investigated for use in minimally invasive surgeries. It was noted early in the development of these devices that elastic energy storage can lead to rapid snapping motion for designs with moderate to high tube curvatures. Substantial progress has recently been made in the concentric tube robot community in designing snap-free robots, planning stable paths, and characterizing conditions that result in snapping for specific classes of concentric tube robots.
View Article and Find Full Text PDFConcentric tube robots can enable new clinical interventions if they are able to pass through soft tissue, deploy along desired paths through open cavities, or travel along winding lumens. These behaviors require the robot to deploy in such a way that the curved shape of its shaft remains unchanged as the tip progresses forward (i.e.
View Article and Find Full Text PDFConcentric tube robots are thin, tentacle-like devices that can move along curved paths and can potentially enable new, less invasive surgical procedures. Safe and effective operation of this type of robot requires that the robot's shaft avoid sensitive anatomical structures (e.g.
View Article and Find Full Text PDFThe needle-sized surgical tools used in arthroscopy, otolaryngology, and other surgical fields could become even more valuable to surgeons if endowed with the ability to navigate around sharp corners to manipulate or visualize tissue. We present a needle-sized wrist design that grants this ability. It can be easily interfaced with manual tools or concentric tube robots and is straightforward and inexpensive to manufacture.
View Article and Find Full Text PDFBackground: Novel robots have recently been developed specifically for endonasal surgery. They can deliver several thin, tentacle-like surgical instruments through a single nostril. Among the many potential advantages of such a robotic system is the prospect of telesurgery over long distances.
View Article and Find Full Text PDFSteerable needles can potentially increase the accuracy of needle-based diagnosis and therapy delivery, provided they can be adequately controlled based on medical image information. We propose a novel sliding mode control law that can be used to deliver the tip of a flexible asymmetric-tipped needle to a desired point, or to track a desired trajectory within tissue. The proposed control strategy requires no knowledge of model parameters, has bounded input speeds, and requires little computational resources.
View Article and Find Full Text PDFExpert Rev Med Devices
January 2014
This paper discusses a new class of robots known as concentric tube robots and their application to transnasal skull base surgery. The endonasal approach has clear benefits for patients, but the surgery presents challenges that strongly motivate the use of robotic tools. In this paper, the concentric tube robot concept is described, and preliminary experimental results for transnasal skull base surgery are reviewed.
View Article and Find Full Text PDFMechanics-based models of concentric tube continuum robots have recently achieved a level of sophistication that makes it possible to begin to apply these robots to a variety of real-world clinical scenarios. Endonasal skull base surgery is one such application, where their small diameter and tentacle like dexterity are particularly advantageous. In this paper we provide the medical motivation for an endonasal surgical robot featuring concentric tube manipulators, and describe our model-based design and teleoperation methods, as well as a complete system incorporating image-guidance.
View Article and Find Full Text PDFIEEE Trans Biomed Eng
April 2013
In the quest to design higher curvature bevel-steered needles, kinked bevel-tips have been one of the most successful approaches yet proposed. However, the price to be paid for enhancing steerability in this way has been increased tissue damage, since the prebent tip cuts a local helical path into tissue when axially rotated. This is problematic when closed-loop control is desired, because the controller will typically require the needle to rotate rapidly, and it is particularly problematic when duty cycling (i.
View Article and Find Full Text PDF